
Applied Analysis (APPM 5450): Midterm 2
5.00pm – 6.20pm, Mar 22, 2006. Closed books.

Note: The problems are worth two points each, for a total of 16 points.

Problem 1: In this problem, ∂ = (d/dx), and δ ∈ S∗(R) denotes the Dirac delta
function.

(a) For T ∈ S∗(R), define ∂T , and prove that what you define is a continuous
functional on S(R). (You may use the fact that ∂ : S → S is continuous.)

(b) Set U(x) = x [∂δ](x), and calculate, for ϕ ∈ S, 〈U,ϕ〉.

(c) Set V (x) = x δ(x), and calculate, for ϕ ∈ S, 〈∂V, ϕ〉.

Solution:

(a) For T ∈ S∗, we define ∂T by 〈∂T, ϕ〉 = −〈T, ∂ϕ〉.

To prove that ∂T is a continuous functional, we need to prove that when ϕn → ϕ
in S, 〈∂T, ϕn〉 → 〈∂T, ϕ〉 in R. To do this, we assume that ϕn → ϕ in S. Then

〈∂T, ϕn〉 = −〈T, ∂ϕn〉 → −〈T, ∂ϕ〉 = 〈∂T, ϕn〉.
The first and the last steps are simply the definition of ∂T . The middle step is valid
since T is continuous, and ∂ϕn → ∂ϕ in S. (Linearity is obvious.)

(b) We have

〈x ∂δ, ϕ〉 = 〈∂δ, xϕ〉 = −〈δ, ∂(xϕ)〉 = −〈δ, ϕ+ xϕ′〉 = −ϕ(0)− 0ϕ′(0) = −ϕ(0).

(c) We have

〈∂(xδ), ϕ〉 = −〈xδ, ϕ′〉 = −〈δ, xϕ′〉 = −0ϕ′(0) = 0.

Note 1: You could alternatively have shown that V = 0 since 〈V, ϕ〉 = 〈xδ, ϕ〉 =
〈δ, xϕ〉 = 0; then trivially ∂V = ∂0 = 0.

Note 2: There is no product rule for differentiating products of distributions. (In
fact, there is no general product of distributions. . . )



Problem 2: We define the functions ϕn ∈ S by setting ϕn(x) = x2√
x2+1/n

e−x2
.

Does the sequence converge in S as n→∞? If so, to what?

Solution: The sequence ϕn converges in the uniform norm to ϕ(x) = |x| e−x2
. Since

ϕ is not a Schwartz function, the sequence ϕn cannot converge in S.

(To prove the last assertion, pick any ψ ∈ S. Then lim ||ϕn−ψ||0,0 = lim ||ϕn−ψ||u =
||ϕ− ψ||u > 0, so clearly ϕn cannot converge to ψ.)



Problem 3: Let H be a Hilbert space and let A be a compact self-adjoint operator
on H. Let b be a non-zero real number, and set f(x) = (x − i b)−1 where i is the
imaginary unit. This question concerns different ways of defining f(A).

(a) Noting that f has the MacLaurin expansion f(x) = (−1/ib)
∑∞

n=0(x/ib)
n, we de-

fine BN = (−1/ib)
∑N

n=1((1/ib)A)n. Describe when, if ever, the sequence (BN )∞N=1
converges in norm in B(H).

(b) Let (ϕn)∞n=1 denote an orthonormal basis for H consisting of eigenvectors of
A, so that Aϕn = λn ϕn. Define the operator CN by setting, for u ∈ H, CN u =∑N

n=1 f(λn) (ϕn, u)ϕn. Describe when, if ever, the sequence (CN )∞N=1 converges
strongly in B(H).

(c) Describe when, if ever, the sequence (CN )∞N=1 converges in norm in B(H).

Solution:

(a) If ||A|| < |b|, then BN converges in norm, since, as N →∞,

||B∞−BN || = ||
∞∑

n=N+1

(
A

ib

)n

|| ≤
∞∑

n=N+1

(
||A||
|b|

)n

=
(
||A||
|b|

)N+1 1
1− ||A||/|b|

→ 0.

Conversely, if ||A|| ≥ |b|, then there exists a λ such that |λ| = ||A|| and a v 6= 0 such
that Av = λv. Then BN cannot even converge strongly since

||BNv −BN−1v|| = || − 1
ib

λN

(ib)N
v|| =

∣∣∣∣λb
∣∣∣∣N ||v|| ≥ ||v||.

(b) CN always converges strongly. To prove this, we need to show that for any u,
||CN u− C∞ u|| → 0. We fix a u ∈ H, and set un = (ϕn, u). Then, as N →∞,

||CN u− C∞ u||2 = ||
∞∑

n=N+1

f(λn)un ϕn||2 =
∞∑

n=N+1

|f(λn)|2 |un|2

≤
(

sup
n
|f(λn)|2

) ∞∑
n=N+1

|un|2 ≤
1
|b|2

∞∑
n=N+1

|un|2 → 0.

The fact that sup |f(λn)|2 ≤ 1/|b|2 follows from the fact that all λn are real (since
A is self-adjoint).

(c) CN never converges in norm. To prove this, we note that A is compact, so
λn → 0 and f(λn) → −1/ib. Thus, there exists an M such that n ≥ M implies
that |f(λn)| ≥ 1/2|b|. It follows that for any N , ||CN − C∞|| ≥ 1/2|b| since for any
m > max(M,N), we have

||CN − C∞|| ≥ ||(CN − C∞)ϕm|| = ||f(λm)ϕm|| = |f(λm)| ≥ 1
2|b|

.



Problem 4: Let R denote a real number such that 0 < R <∞ and define

fn(x) =
{
n cos(nx) for |x| ≤ R,
0, for |x| > R.

For which numbers R, if any, is it the case that fn → 0 in S∗?

Solution: fn → 0 in S∗ if and only if R = mπ, for some positive integer m.

To prove this, we recall that fn → 0 in S∗ if and only if 〈fn, ϕ〉 → 0 for every ϕ ∈ S.
We have, for any ϕ ∈ S,

〈fn, ϕ〉 =
∫ R

−R
n cos(nx)ϕ(x) dx

= [sin(nx)ϕ(x)]R−R −
∫ R

−R
sin(nx)ϕ′(x) dx

= [sin(nx)ϕ(x)]R−R −
[
− 1
n

cos(nx)ϕ′(x)
]R

−R

−
∫ R

−R

1
n

cos(nx)ϕ′′(x) dx

= sin(nR)
(
ϕ(R) + ϕ(−R)

)︸ ︷︷ ︸
=In

+
cos(nR)

n

(
ϕ′(R)− ϕ′(−R)

)
︸ ︷︷ ︸

=Jn

+
∫ R

−R

1
n

cos(nx)ϕ′′(x) dx︸ ︷︷ ︸
=Kn

.

As n→∞, we have

|Jn| ≤
1
n

(
|ϕ′(R)|+ |ϕ′(−R)|

)
≤ 1
n

2||ϕ||1,0 → 0.

Likewise,

|Kn| ≤
1
n

∫ R

−R
|ϕ′′(x)| dx =

1
n

∫ R

−R

1
1 + |x|2

(1 + |x|2)|ϕ′′(x)| dx ≤ 1
n
π||ϕ||2,2 → 0.

So

〈fn, ϕ〉 → 0 ⇔ In → 0,

⇔ sin(nR) → 0,
⇔ R = mπ, for m = 1, 2, 3 . . .


