Applied Analysis (APPM 5450): Midterm 2

$5.00 \mathrm{pm}-6.20 \mathrm{pm}$, Mar 22, 2006. Closed books.
Note: The problems are worth two points each, for a total of 16 points.
Problem 1: In this problem, $\partial=(d / d x)$, and $\delta \in \mathcal{S}^{*}(\mathbb{R})$ denotes the Dirac delta function.
(a) For $T \in \mathcal{S}^{*}(\mathbb{R})$, define ∂T, and prove that what you define is a continuous functional on $\mathcal{S}(\mathbb{R})$. (You may use the fact that $\partial: \mathcal{S} \rightarrow \mathcal{S}$ is continuous.)
(b) Set $U(x)=x[\partial \delta](x)$, and calculate, for $\varphi \in \mathcal{S},\langle U, \varphi\rangle$.
(c) Set $V(x)=x \delta(x)$, and calculate, for $\varphi \in \mathcal{S},\langle\partial V, \varphi\rangle$.

Solution:

(a) For $T \in \mathcal{S}^{*}$, we define ∂T by $\langle\partial T, \varphi\rangle=-\langle T, \partial \varphi\rangle$.

To prove that ∂T is a continuous functional, we need to prove that when $\varphi_{n} \rightarrow \varphi$ in $\mathcal{S},\left\langle\partial T, \varphi_{n}\right\rangle \rightarrow\langle\partial T, \varphi\rangle$ in \mathbb{R}. To do this, we assume that $\varphi_{n} \rightarrow \varphi$ in \mathcal{S}. Then

$$
\left\langle\partial T, \varphi_{n}\right\rangle=-\left\langle T, \partial \varphi_{n}\right\rangle \rightarrow-\langle T, \partial \varphi\rangle=\left\langle\partial T, \varphi_{n}\right\rangle
$$

The first and the last steps are simply the definition of ∂T. The middle step is valid since T is continuous, and $\partial \varphi_{n} \rightarrow \partial \varphi$ in \mathcal{S}. (Linearity is obvious.)
(b) We have

$$
\langle x \partial \delta, \varphi\rangle=\langle\partial \delta, x \varphi\rangle=-\langle\delta, \partial(x \varphi)\rangle=-\left\langle\delta, \varphi+x \varphi^{\prime}\right\rangle=-\varphi(0)-0 \varphi^{\prime}(0)=-\varphi(0)
$$

(c) We have

$$
\langle\partial(x \delta), \varphi\rangle=-\left\langle x \delta, \varphi^{\prime}\right\rangle=-\left\langle\delta, x \varphi^{\prime}\right\rangle=-0 \varphi^{\prime}(0)=0
$$

Note 1: You could alternatively have shown that $V=0$ since $\langle V, \varphi\rangle=\langle x \delta, \varphi\rangle=$ $\langle\delta, x \varphi\rangle=0$; then trivially $\partial V=\partial 0=0$.

Note 2: There is no product rule for differentiating products of distributions. (In fact, there is no general product of distributions...)

Problem 2: We define the functions $\varphi_{n} \in \mathcal{S}$ by setting $\varphi_{n}(x)=\frac{x^{2}}{\sqrt{x^{2}+1 / n}} e^{-x^{2}}$. Does the sequence converge in \mathcal{S} as $n \rightarrow \infty$? If so, to what?

Solution: The sequence φ_{n} converges in the uniform norm to $\varphi(x)=|x| e^{-x^{2}}$. Since φ is not a Schwartz function, the sequence φ_{n} cannot converge in \mathcal{S}.
(To prove the last assertion, pick any $\psi \in \mathcal{S}$. Then $\lim \left\|\varphi_{n}-\psi\right\|_{0,0}=\lim \left\|\varphi_{n}-\psi\right\|_{\mathrm{u}}=$ $\|\varphi-\psi\|_{\mathrm{u}}>0$, so clearly φ_{n} cannot converge to ψ.)

Problem 3: Let H be a Hilbert space and let A be a compact self-adjoint operator on H. Let b be a non-zero real number, and set $f(x)=(x-i b)^{-1}$ where i is the imaginary unit. This question concerns different ways of defining $f(A)$.
(a) Noting that f has the MacLaurin expansion $f(x)=(-1 / i b) \sum_{n=0}^{\infty}(x / i b)^{n}$, we define $B_{N}=(-1 / i b) \sum_{n=1}^{N}((1 / i b) A)^{n}$. Describe when, if ever, the sequence $\left(B_{N}\right)_{N=1}^{\infty}$ converges in norm in $\mathcal{B}(H)$.
(b) Let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ denote an orthonormal basis for H consisting of eigenvectors of A, so that $A \varphi_{n}=\lambda_{n} \varphi_{n}$. Define the operator C_{N} by setting, for $u \in H, C_{N} u=$ $\sum_{n=1}^{N} f\left(\lambda_{n}\right)\left(\varphi_{n}, u\right) \varphi_{n}$. Describe when, if ever, the sequence $\left(C_{N}\right)_{N=1}^{\infty}$ converges strongly in $\mathcal{B}(H)$.
(c) Describe when, if ever, the sequence $\left(C_{N}\right)_{N=1}^{\infty}$ converges in norm in $\mathcal{B}(H)$.

Solution:

(a) If $\|A\|<|b|$, then B_{N} converges in norm, since, as $N \rightarrow \infty$,
$\left\|B_{\infty}-B_{N}\right\|=\left\|\sum_{n=N+1}^{\infty}\left(\frac{A}{i b}\right)^{n}\right\| \leq \sum_{n=N+1}^{\infty}\left(\frac{\|A\|}{|b|}\right)^{n}=\left(\frac{\|A\|}{|b|}\right)^{N+1} \frac{1}{1-\| A| | /|b|} \rightarrow 0$.
Conversely, if $\|A\| \geq|b|$, then there exists a λ such that $|\lambda|=\|A\|$ and a $v \neq 0$ such that $A v=\lambda v$. Then B_{N} cannot even converge strongly since

$$
\left\|B_{N} v-B_{N-1} v\right\|=\left\|-\frac{1}{i b} \frac{\lambda^{N}}{(i b)^{N}} v\right\|=\left|\frac{\lambda}{b}\right|^{N}\|v\| \geq\|v\|
$$

(b) C_{N} always converges strongly. To prove this, we need to show that for any u, $\left\|C_{N} u-C_{\infty} u\right\| \rightarrow 0$. We fix a $u \in H$, and set $u_{n}=\left(\varphi_{n}, u\right)$. Then, as $N \rightarrow \infty$,

$$
\begin{aligned}
\left\|C_{N} u-C_{\infty} u\right\|^{2}=\left\|\sum_{n=N+1}^{\infty} f\left(\lambda_{n}\right) u_{n} \varphi_{n}\right\|^{2} & =\sum_{n=N+1}^{\infty}\left|f\left(\lambda_{n}\right)\right|^{2}\left|u_{n}\right|^{2} \\
& \leq\left(\sup _{n}\left|f\left(\lambda_{n}\right)\right|^{2}\right) \sum_{n=N+1}^{\infty}\left|u_{n}\right|^{2} \leq \frac{1}{|b|^{2}} \sum_{n=N+1}^{\infty}\left|u_{n}\right|^{2} \rightarrow 0
\end{aligned}
$$

The fact that $\sup \left|f\left(\lambda_{n}\right)\right|^{2} \leq 1 /|b|^{2}$ follows from the fact that all λ_{n} are real (since A is self-adjoint).
(c) C_{N} never converges in norm. To prove this, we note that A is compact, so $\lambda_{n} \rightarrow 0$ and $f\left(\lambda_{n}\right) \rightarrow-1 / i b$. Thus, there exists an M such that $n \geq M$ implies that $\left|f\left(\lambda_{n}\right)\right| \geq 1 / 2|b|$. It follows that for any $N,\left\|C_{N}-C_{\infty}\right\| \geq 1 / 2|b|$ since for any $m>\max (M, N)$, we have

$$
\left\|C_{N}-C_{\infty}\right\| \geq\left\|\left(C_{N}-C_{\infty}\right) \varphi_{m}\right\|=\left\|f\left(\lambda_{m}\right) \varphi_{m}\right\|=\left|f\left(\lambda_{m}\right)\right| \geq \frac{1}{2|b|}
$$

Problem 4: Let R denote a real number such that $0<R<\infty$ and define

$$
f_{n}(x)= \begin{cases}n \cos (n x) & \text { for }|x| \leq R \\ 0, & \text { for }|x|>R\end{cases}
$$

For which numbers R, if any, is it the case that $f_{n} \rightarrow 0$ in \mathcal{S}^{*} ?

Solution: $f_{n} \rightarrow 0$ in \mathcal{S}^{*} if and only if $R=m \pi$, for some positive integer m.
To prove this, we recall that $f_{n} \rightarrow 0$ in \mathcal{S}^{*} if and only if $\left\langle f_{n}, \varphi\right\rangle \rightarrow 0$ for every $\varphi \in \mathcal{S}$. We have, for any $\varphi \in \mathcal{S}$,

$$
\begin{aligned}
& \left\langle f_{n}, \varphi\right\rangle=\int_{-R}^{R} n \cos (n x) \varphi(x) d x \\
& =[\sin (n x) \varphi(x)]_{-R}^{R}-\int_{-R}^{R} \sin (n x) \varphi^{\prime}(x) d x \\
& =[\sin (n x) \varphi(x)]_{-R}^{R}-\left[-\frac{1}{n} \cos (n x) \varphi^{\prime}(x)\right]_{-R}^{R}-\int_{-R}^{R} \frac{1}{n} \cos (n x) \varphi^{\prime \prime}(x) d x \\
& =\underbrace{\sin (n R)(\varphi(R)+\varphi(-R))}_{=I_{n}}+\underbrace{\frac{\cos (n R)}{n}\left(\varphi^{\prime}(R)-\varphi^{\prime}(-R)\right)}_{=J_{n}}+\underbrace{\int_{-R}^{R} \frac{1}{n} \cos (n x) \varphi^{\prime \prime}(x) d x .}_{=K_{n}}
\end{aligned}
$$

As $n \rightarrow \infty$, we have

$$
\left|J_{n}\right| \leq \frac{1}{n}\left(\left|\varphi^{\prime}(R)\right|+\left|\varphi^{\prime}(-R)\right|\right) \leq \frac{1}{n} 2\|\varphi\|_{1,0} \rightarrow 0
$$

Likewise,

$$
\left|K_{n}\right| \leq \frac{1}{n} \int_{-R}^{R}\left|\varphi^{\prime \prime}(x)\right| d x=\frac{1}{n} \int_{-R}^{R} \frac{1}{1+|x|^{2}}\left(1+|x|^{2}\right)\left|\varphi^{\prime \prime}(x)\right| d x \leq \frac{1}{n} \pi\|\varphi\|_{2,2} \rightarrow 0
$$

So

$$
\begin{aligned}
\left\langle f_{n}, \varphi\right\rangle \rightarrow 0 & \Leftrightarrow I_{n} \rightarrow 0, \\
& \Leftrightarrow \sin (n R) \rightarrow 0, \\
& \Leftrightarrow R=m \pi, \quad \text { for } m=1,2,3 \ldots
\end{aligned}
$$

