Applied Analysis (APPM 5450): Midterm 2 5.00pm – 6.20pm, Mar 22, 2006. Closed books.

Note: The problems are worth two points each, for a total of 16 points.

Problem 1: In this problem, $\partial = (d/dx)$, and $\delta \in \mathcal{S}^*(\mathbb{R})$ denotes the Dirac delta function.

(a) For $T \in \mathcal{S}^*(\mathbb{R})$, define ∂T , and prove that what you define is a continuous functional on $\mathcal{S}(\mathbb{R})$. (You may use the fact that $\partial : \mathcal{S} \to \mathcal{S}$ is continuous.)

(b) Set $U(x) = x [\partial \delta](x)$, and calculate, for $\varphi \in \mathcal{S}, \langle U, \varphi \rangle$.

(c) Set $V(x) = x \,\delta(x)$, and calculate, for $\varphi \in \mathcal{S}$, $\langle \partial V, \varphi \rangle$.

Solution:

(a) For $T \in \mathcal{S}^*$, we define ∂T by $\langle \partial T, \varphi \rangle = -\langle T, \partial \varphi \rangle$.

To prove that ∂T is a continuous functional, we need to prove that when $\varphi_n \to \varphi$ in $\mathcal{S}, \langle \partial T, \varphi_n \rangle \to \langle \partial T, \varphi \rangle$ in \mathbb{R} . To do this, we assume that $\varphi_n \to \varphi$ in \mathcal{S} . Then

$$\langle \partial T, \varphi_n \rangle = -\langle T, \partial \varphi_n \rangle \to -\langle T, \partial \varphi \rangle = \langle \partial T, \varphi_n \rangle.$$

The first and the last steps are simply the definition of ∂T . The middle step is valid since T is continuous, and $\partial \varphi_n \to \partial \varphi$ in S. (Linearity is obvious.)

(b) We have

$$\langle x \,\partial \delta, \,\varphi \rangle = \langle \partial \delta, \, x\varphi \rangle = -\langle \delta, \,\partial(x\varphi) \rangle = -\langle \delta, \,\varphi + x\varphi' \rangle = -\varphi(0) - 0\varphi'(0) = -\varphi(0).$$

(c) We have

$$\langle \partial(x\delta), \varphi \rangle = -\langle x\delta, \varphi' \rangle = -\langle \delta, x\varphi' \rangle = -0 \varphi'(0) = 0.$$

Note 1: You could alternatively have shown that V = 0 since $\langle V, \varphi \rangle = \langle x\delta, \varphi \rangle = \langle \delta, x\varphi \rangle = 0$; then trivially $\partial V = \partial 0 = 0$.

Note 2: There is no product rule for differentiating products of distributions. (In fact, there is no general product of distributions...)

Problem 2: We define the functions $\varphi_n \in \mathcal{S}$ by setting $\varphi_n(x) = \frac{x^2}{\sqrt{x^2+1/n}}e^{-x^2}$. Does the sequence converge in \mathcal{S} as $n \to \infty$? If so, to what?

Solution: The sequence φ_n converges in the uniform norm to $\varphi(x) = |x| e^{-x^2}$. Since φ is not a Schwartz function, the sequence φ_n cannot converge in \mathcal{S} .

(To prove the last assertion, pick any $\psi \in S$. Then $\lim ||\varphi_n - \psi||_{0,0} = \lim ||\varphi_n - \psi||_u = ||\varphi - \psi||_u > 0$, so clearly φ_n cannot converge to ψ .)

Problem 3: Let *H* be a Hilbert space and let *A* be a compact self-adjoint operator on *H*. Let *b* be a non-zero real number, and set $f(x) = (x - ib)^{-1}$ where *i* is the imaginary unit. This question concerns different ways of defining f(A).

(a) Noting that f has the MacLaurin expansion $f(x) = (-1/ib) \sum_{n=0}^{\infty} (x/ib)^n$, we define $B_N = (-1/ib) \sum_{n=1}^{N} ((1/ib) A)^n$. Describe when, if ever, the sequence $(B_N)_{N=1}^{\infty}$ converges in norm in $\mathcal{B}(H)$.

(b) Let $(\varphi_n)_{n=1}^{\infty}$ denote an orthonormal basis for H consisting of eigenvectors of A, so that $A \varphi_n = \lambda_n \varphi_n$. Define the operator C_N by setting, for $u \in H$, $C_N u = \sum_{n=1}^{N} f(\lambda_n) (\varphi_n, u) \varphi_n$. Describe when, if ever, the sequence $(C_N)_{N=1}^{\infty}$ converges strongly in $\mathcal{B}(H)$.

(c) Describe when, if ever, the sequence $(C_N)_{N=1}^{\infty}$ converges in norm in $\mathcal{B}(H)$.

Solution:

(a) If ||A|| < |b|, then B_N converges in norm, since, as $N \to \infty$,

$$||B_{\infty} - B_N|| = ||\sum_{n=N+1}^{\infty} \left(\frac{A}{ib}\right)^n|| \le \sum_{n=N+1}^{\infty} \left(\frac{||A||}{|b|}\right)^n = \left(\frac{||A||}{|b|}\right)^{N+1} \frac{1}{1 - ||A||/|b|} \to 0.$$

Conversely, if $||A|| \ge |b|$, then there exists a λ such that $|\lambda| = ||A||$ and a $v \ne 0$ such that $Av = \lambda v$. Then B_N cannot even converge strongly since

$$||B_N v - B_{N-1} v|| = || - \frac{1}{ib} \frac{\lambda^N}{(ib)^N} v|| = \left|\frac{\lambda}{b}\right|^N ||v|| \ge ||v||.$$

(b) C_N always converges strongly. To prove this, we need to show that for any u, $||C_N u - C_\infty u|| \to 0$. We fix a $u \in H$, and set $u_n = (\varphi_n, u)$. Then, as $N \to \infty$,

$$||C_N u - C_\infty u||^2 = ||\sum_{n=N+1}^{\infty} f(\lambda_n) u_n \varphi_n||^2 = \sum_{n=N+1}^{\infty} |f(\lambda_n)|^2 |u_n|^2$$
$$\leq \left(\sup_n |f(\lambda_n)|^2\right) \sum_{n=N+1}^{\infty} |u_n|^2 \leq \frac{1}{|b|^2} \sum_{n=N+1}^{\infty} |u_n|^2 \to 0.$$

The fact that $\sup |f(\lambda_n)|^2 \leq 1/|b|^2$ follows from the fact that all λ_n are real (since A is self-adjoint).

(c) C_N never converges in norm. To prove this, we note that A is compact, so $\lambda_n \to 0$ and $f(\lambda_n) \to -1/ib$. Thus, there exists an M such that $n \ge M$ implies that $|f(\lambda_n)| \ge 1/2|b|$. It follows that for any N, $||C_N - C_\infty|| \ge 1/2|b|$ since for any $m > \max(M, N)$, we have

$$||C_N - C_\infty|| \ge ||(C_N - C_\infty)\varphi_m|| = ||f(\lambda_m)\varphi_m|| = |f(\lambda_m)| \ge \frac{1}{2|b|}$$

Problem 4: Let R denote a real number such that $0 < R < \infty$ and define

$$f_n(x) = \begin{cases} n \cos(nx) & \text{for } |x| \le R, \\ 0, & \text{for } |x| > R. \end{cases}$$

For which numbers R, if any, is it the case that $f_n \to 0$ in \mathcal{S}^* ?

Solution: $f_n \to 0$ in \mathcal{S}^* if and only if $R = m \pi$, for some positive integer m.

To prove this, we recall that $f_n \to 0$ in \mathcal{S}^* if and only if $\langle f_n, \varphi \rangle \to 0$ for every $\varphi \in \mathcal{S}$. We have, for any $\varphi \in \mathcal{S}$,

$$\langle f_n, \varphi \rangle = \int_{-R}^{R} n \cos(nx) \varphi(x) dx$$

= $[\sin(nx)\varphi(x)]_{-R}^{R} - \int_{-R}^{R} \sin(nx) \varphi'(x) dx$
= $[\sin(nx)\varphi(x)]_{-R}^{R} - \left[-\frac{1}{n} \cos(nx)\varphi'(x) \right]_{-R}^{R} - \int_{-R}^{R} \frac{1}{n} \cos(nx) \varphi''(x) dx$
= $\underbrace{\sin(nR) \left(\varphi(R) + \varphi(-R)\right)}_{=I_n} + \underbrace{\frac{\cos(nR)}{n} \left(\varphi'(R) - \varphi'(-R)\right)}_{=J_n} + \underbrace{\int_{-R}^{R} \frac{1}{n} \cos(nx) \varphi''(x) dx}_{=K_n}$

As $n \to \infty$, we have

$$|J_n| \le \frac{1}{n} (|\varphi'(R)| + |\varphi'(-R)|) \le \frac{1}{n} 2||\varphi||_{1,0} \to 0.$$

Likewise,

$$|K_n| \le \frac{1}{n} \int_{-R}^{R} |\varphi''(x)| \, dx = \frac{1}{n} \int_{-R}^{R} \frac{1}{1+|x|^2} (1+|x|^2) |\varphi''(x)| \, dx \le \frac{1}{n} \pi ||\varphi||_{2,2} \to 0.$$

 So

$$\langle f_n, \varphi \rangle \to 0 \quad \Leftrightarrow \quad I_n \to 0,$$

 $\Leftrightarrow \quad \sin(nR) \to 0,$
 $\Leftrightarrow \quad R = m \pi, \quad \text{for } m = 1, 2, 3 \dots$