
Applied Analysis (APPM 5450): Midterm 2 – Solutions

Problem 1: Consider the function f ∈ S∗(R) defined by

f(x) =
{ −1 for x ≤ 0,

1 for x > 0.

Compute the distributional derivative of f . (4p)

We find that

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫ ∞

−∞
f(x) ϕ′(x) dx =

∫ 0

−∞
ϕ′(x) dx−

∫ ∞

0
ϕ′(x) dx

= [ϕ(x)]0−∞ − [ϕ(x)]∞0 =
(
ϕ(0)− lim

R→−∞
ϕ(R)

)− (
lim

R→∞
ϕ(R)− ϕ(0)

)
= 2ϕ(0),

since ϕ(x) → 0 as |x| → ∞. It follows that f ′ = 2δ where δ is the Dirac delta
function.



Problem 2: Consider the Hilbert space H = l2(N), and the operators L,R ∈ B(H)
defined by

L (x1, x2, x3, . . . ) = (x2, x3, x4, . . . ),

R (x1, x2, x3, . . . ) = (0, x1, x2, . . . ).

In the questions below, λ is a complex number,

(a) Prove that if |λ| < 1, then λ ∈ σp(L). (2p)

(b) Prove that if |λ| < 1, then λ ∈ σr(R). (2p)

(c) Prove that if |λ| = 1, then λ ∈ σ(L). (2p)

(a) Set u = (1, λ, λ2, . . . ). Then u ∈ H, and

Lu = (λ, λ2, λ3, . . . ) = λu,

and since u 6= 0, it follows that λ ∈ σp(L).

(b) First we prove that R− λI is one-to-one. Suppose that (R− λI) u = 0. Then

0 = λu1, u1 = λu2, u2 = λu3, etc.

If λ = 0, then u = 0. If λ 6= 0, then the first equation implies that u1 = 0, the
second that u2 = (1/λ)u1 = 0, and so on. In either case, u = 0, so λ /∈ σp(R).

Next note that the range of R− λI is not onto since1

ran(R− λI)⊥ = ker(R∗ − λ̄I) = ker(L− λ̄I) 6= {0}
since λ̄ is an eigenvalue of L. It follows that λ /∈ ρ(R). It also follows that the range
of R− λI cannot be dense so λ /∈ σc(R). We must then have λ ∈ σr(R).

(c) We proved in (a) that the open unit disc is contained in σ(L). Since σ(L) is
closed, it follows that the closed unit disc must also be contained in σ(L).

1In this calculation, we use that R∗ = L. This is simple to prove:

〈R x, y〉 =

∞X
n=2

xn−1 yn =

∞X
n=1

xn yn+1 = 〈x, L y〉.



Problem 3: Let H be a Hilbert space with an ON-basis (ϕn)∞n=1. Let (λn)∞n=1

be a sequence of complex numbers such that |λn| < 1 for every n, and let for
N = 1, 2, 3, . . . the operator AN ∈ B(H) defined by

AN u =
N∑

n=1

λn 〈ϕn, u〉ϕn.

(a) Prove that there exists an operator A ∈ B(H) such that AN → A strongly as
N →∞. (2p)

(b) Prove that if some λn is not purely real, then A is not self-adjoint. (1p)

(c) Specify when, if ever, it is the case that AN converges to A in norm. (1p)

(d) Suppose that the sequence (λn)∞n=1 has the cluster point λ and that λ 6= 0. Prove
that then A cannot be compact. (2p)

(a) We need to prove that for any fixed u ∈ H, the sequence the sequence (AN u)∞N=1
has a limit point (in the norm topology) in H. Since H is complete, it is sufficient
to prove that (AN u)∞N=1 is Cauchy. Suppose that M and N are integers such that
M < N . We get from Pythagoras that

||AN u−AM u||2 = ||
N∑

n=M+1

λn 〈ϕn, u〉ϕn||2 ≤
N∑

n=M+1

|λn|2 |〈ϕn, u〉|2.

Now use that |λn| ≤ 1 for all n,

(1) ||AN u−AM u||2 ≤
N∑

n=M+1

|〈ϕn, u〉|2 ≤
∞∑

n=M+1

|〈ϕn, u〉|2.

Since
∑∞

n=1 |〈ϕn, u〉|2 = ||u||2 < ∞, we find that the sum in (1) converges to zero
as M →∞, so (AN u) is indeed Cauchy.

(b) Suppose that λn0 6= λn0 . Then

〈Aϕn0 , ϕn0〉 = 〈λn0 ϕn0 , ϕn0〉 = λn0〈ϕn0 , ϕn0〉 = λn0 ,

but
〈ϕn0 , Aϕn0〉 = 〈ϕn0 , λn0 ϕn0〉 = λn0〈ϕn0 , ϕn0〉 = λn0 .

(c) ||AN −A|| → 0 if and only if λn → 0 as n →∞.

(d) Pick λnj such that lim
j→∞

λnj = λ 6= 0, and |λnj | ≥ |λ|/2 for all j. Set

uj = (1/λnj ) ϕnj .

Then ||uj || ≤ 2/|λ|, so (uj) is a bounded sequence. However, Auj = ϕnj , so (Auj)
is an ON-sequence. It follows that then A cannot be compact. (Recall that if A is
compact, and (uj) is a bounded sequence, then (Auj) must have a norm-convergent
subsequence.)



Problem 4: Prove that the map F : S(R) → S(R) : ϕ 7→ ϕ2 is continuous. (4p)

Suppose that ϕj → ϕ in S. We need to prove that for each n, k, we have

(2) lim
j→∞

||ϕ2
j − ϕ2||n,k = 0.

For m = 0, 1, 2, 3, . . . set

Cm = ||ϕ||m,0 + sup
j
||ϕj ||m,0.

Since (ϕj) is Cauchy with respect to || · ||m,0, each Cm is finite.

Now for a given pair n, k, we have

||ϕ2
j − ϕ2||n,k = sup

x

∣∣∣(1 + x2)k/2∂n(ϕj(x)2 − ϕ(x)2)
∣∣∣

= sup
x

∣∣∣(1 + x2)k/2∂n
(
(ϕj(x)− ϕ(x))(ϕj(x) + ϕ(x))

)∣∣∣

= sup
x

∣∣∣∣∣(1 + x2)k/2
n∑

m=0

(
n

m

)
∂n−m(ϕj(x)− ϕ(x))∂m(ϕj(x) + ϕ(x))

∣∣∣∣∣

≤
n∑

m=0

(
n

m

)
sup

x

[
(1 + x2)k/2|∂n−m(ϕj(x)− ϕ(x))| |ϕ(m)

j (x) + ϕ(m)(x)|︸ ︷︷ ︸
≤Cm

]

≤
n∑

m=0

Cm

(
n

m

)
||ϕj − ϕ||n−m,k.

Since the last line involves a finite number of terms, each of which converges to zero
as j →∞, it follows that (2) holds.


