Homework 9

11.4) If $\phi \in S(R)$, prove that $\phi \delta' = \phi(0)\delta' - \phi'(0)\delta$.

$$\langle \phi \delta', \psi \rangle = \langle \delta', \phi \psi \rangle = -\langle \delta, (\phi \psi)' \rangle = -\langle \delta, \phi' \psi + \phi \psi' \rangle = -\langle \delta, \phi' \psi \rangle - \langle \delta, \phi \psi' \rangle = -\phi'(0)\psi(0) - \phi(0)\psi'(0) = -\langle \phi'(0)\delta, \psi \rangle + \langle \phi(0)\delta', \psi \rangle = \langle -\phi'(0)\delta + \phi(0)\delta', \psi \rangle$$

Note that in the equality across the line break the following was used: $-\psi'(0) = -\langle \delta, \psi' \rangle = \langle \delta', \psi \rangle$

11.9) Let $\psi \in S$ and define the convolution operator $Kf(x) = \int \psi(x - y)f(y)dy$ for all $f \in S$. Prove that $K: S \to S$ is a continuous linear operator for the topology of S.

Pick $\phi \in S$. Then

$$||K\phi||_{\alpha,k} = \sup_{x} \left| (1 + |x|^2)^{k/2} \partial_x^{\alpha} \int \psi(x - y) \phi(y) dy \right| = \sup_{x} \left| (1 + |x|^2)^{k/2} \int \psi^{(\alpha)}(x - y) \phi(y) dy \right| = (1)$$

Next we introduce the substitution $z = y - \frac{x}{2}$

$$(1) = \sup_{x} \left| \left(1 + \left| x \right|^{2} \right)^{k/2} \int \psi^{(\alpha)} \left(\frac{x}{2} - z \right) \phi \left(\frac{x}{2} + z \right) dy \right| \le \sup_{x} \left| \left(1 + \left| x \right|^{2} \right)^{k/2} \int \frac{\left\| \psi \right\|_{\alpha, 2N}}{\left(1 + \left| \frac{x}{2} - z \right|^{2} \right)^{\frac{N}{2}}} \frac{\left\| \phi \right\|_{0, 2N}}{\left(1 + \left| \frac{x}{2} + z \right|^{2} \right)^{\frac{N}{2}}} dz \right| = (2)$$

Note that in the step above where the \leq is we pick N s.t. $N \geq k, N \geq d+1$. We can bound the denominator (not including the exponent) as follows

$$\left(1 + \left|\frac{x}{2} - z\right|^{2}\right) \left(1 + \left|\frac{x}{2} + z\right|^{2}\right) = 1 + \frac{1}{16}|x|^{4} + |z|^{4} + \frac{1}{2}|x|^{2} + 2|z|^{2} + \frac{1}{2}|x|^{2}|z|^{2} - \left|\frac{x \cdot z}{|x||z|}\right|^{2} \ge 1 + \frac{1}{2}|x|^{2} + 2|z|^{2} + \frac{1}{2}|x|^{2} + 2|z|^{2}$$

Continuing from above we have

$$(2) \leq \sup_{x} \left(1 + |x|^{2} \right)^{k/2} \int \frac{\|\psi\|_{\alpha,2N}}{\left(1 + \frac{1}{2} |x|^{2} + 2|z|^{2} \right)^{\frac{N}{2}}} \frac{\|\phi\|_{0,2N}}{\left(1 + \frac{1}{2} |x|^{2} + 2|z|^{2} \right)^{\frac{N}{2}}} dz \right| \leq \sup_{x} \left(1 + |x|^{2} \right)^{k/2} \int \frac{\|\psi\|_{\alpha,2N}}{\left(1 + \frac{1}{2} |x|^{2} \right)^{\frac{N}{2}}} \frac{\|\phi\|_{0,2N}}{\left(1 + 2|z|^{2} \right)^{\frac{N}{2}}} dz \right| = C \|\psi\|_{\alpha,2N} \|\phi\|_{0,2N}$$

Combining everything we have $\|K\phi\|_{\alpha,k} \le C \|\psi\|_{\alpha,2N} \|\phi\|_{0,2N}$

Thus $K: S \to S$ is a continuous linear operator for the topology of S.

- **11.10)** For every $h \in \mathbb{R}^n$ define a linear transform $\tau_h : S \to S$ by $\tau_h(f)(x) = f(x-h)$.
- a) Prove that for all $h \in \mathbb{R}^n$, τ_h is continuous in the topology of S. Assume $\phi_n \to \phi$ in S.

$$\|\tau_{h}(\phi_{n}) - \tau_{h}(\phi)\|_{\alpha, k} = \sup_{x} \left| \left(1 + |x|^{2}\right)^{k/2} \left(\partial^{\alpha} \phi_{n}(x - h) - \partial^{\alpha} \phi(x - h)\right) \right| = \sup_{x} \left| \left(1 + |x + h|^{2}\right)^{k/2} \left(\partial^{\alpha} \phi_{n}(x) - \partial^{\alpha} \phi(x)\right) \right| = (*)$$

Where the final equality above substitutes x + h for x.

We can bound this as follows

$$1 + |x + h|^{2} \le 1 + (|x| + |h|)^{2} \le 1 + |x|^{2} + |h|^{2} + 2 \underbrace{|x|h|}_{\le |x|^{2} + |h|^{2}} \le 1 + 2|x|^{2} + 2|h|^{2} \le 2(1 + |x|^{2})(1 + |h|^{2})$$

Using this bound and continuing from (*) we have

$$\|\tau_{h}(\phi_{n}) - \tau_{h}(\phi)\|_{\alpha,k} = \dots = (*) \le \sup_{x} \left| 2(1 + |x|^{2})(1 + |h|^{2})^{k/2} (\partial^{\alpha}\phi_{n}(x) - \partial^{\alpha}\phi(x)) \right| = (2(1 + |h|^{2}))^{k/2} \|\phi_{n} - \phi\|_{\alpha,k} \to 0$$

The convergence is in the last step comes from the assumption that $\phi_n \to \phi$ in S.

b) Prove that for all $f \in S$, the map $h \mapsto \tau_h f$ is continuous from R^n to S.

Assume $h \to 0$ in \mathbb{R}^d . Then

$$\|\tau_h \phi - \phi\|_{\alpha, k} = \left\| \left(1 + |x|^2 \right)^{k/2} \partial^{\alpha} \left(\phi(x - h) - \phi(x) \right) \right\| \le |h| \left\| \left(1 + |x|^2 \right)^{k/2} \nabla \partial^{\alpha} \phi(x_n) \right\|_{u} \le |h| C \sum_{|\beta| = |\alpha| + 1} \|\phi\|_{\beta, k} \xrightarrow{h \to 0} 0$$

Note that above x_n is some point on the line from x - h to x and the first inequality uses the mean value theorem for integrals.

Problem 1) We say that a sequence $(\phi_n)_{n=1}^{\infty}$ is an approximate identity if

1)
$$\phi_n \in C(\mathbb{R}^d), \forall n$$

2)
$$\phi_n(x) \ge 0, \forall n, x$$

3)
$$\int_{\mathbb{R}^d} \phi_n(x) dx = 1, \ \forall n$$

4)
$$\forall \varepsilon > 0, \int_{|x| > \varepsilon} \phi_n(x) dx \xrightarrow{n \to \infty} 0$$

a) Do the conditions imply that $\phi_n \in S^*$?

Yes. Conditions (1)-(3) above imply that $\phi_n \in L^1$, and this immediately implies $\phi_n \in S^*$.

b) Assuming that $\phi_n \in S^*$, prove that $\phi_n \to \delta$ in S^* . Fix $\varepsilon > 0$.

$$\left|\left\langle \phi_n, \phi \right\rangle - \phi(0)\right| = \left|\int_{\mathbb{R}^d} \phi_n(x)\phi(x)dx - \phi(0)\right|^{(a)} = \left|\int_{\mathbb{R}^d} \phi_n(x)(\phi(x) - \phi(0))dx\right| =$$

$$=\left|\int_{|x|<\varepsilon}\phi_{n}(x)(\phi(x)-\phi(0))dx+\int_{|x|\geq\varepsilon}\phi_{n}(x)(\phi(x)-\phi(0))dx\right|\leq\int_{|x|<\varepsilon}\phi_{n}(x)\underbrace{|\phi(x)-\phi(0)|}_{|x|=\varepsilon\|\phi\|_{1,0}}dx+\int_{|x|\geq\varepsilon}\phi_{n}(x)\underbrace{|\phi(x)-\phi(0)|}_{|x|=\varepsilon\|\phi\|_{1,0}}dx$$
Note that the agree little denoted has (a) above an example of the example

Note that the equality denoted by (a) above uses condition (3).

We now have
$$|\langle \phi_n, \phi \rangle - \phi(0)| \le \varepsilon ||\phi||_{1,0} + 2 ||\phi||_u \underbrace{\int_{|x| \ge \varepsilon} \phi_n(x) dx}_{-\frac{n \to \infty}{-\infty} \to 0}$$

This implies $\limsup \left| \left\langle \phi_n, \phi \right\rangle - \phi(0) \right| \le \varepsilon \left\| \phi \right\|_{1,0}$

Since ε was arbitrary we get $|\langle \phi_n, \phi \rangle - \phi(0)| \to 0$, or simply $\phi_n \to \delta$ in S^* .

Problem 3) Let k be a positive integer. Prove that there exist c_k, C_k s.t. $0 < c_k \le C_k < \infty$, and

(1)
$$c_k (1 + |x|^k) \le (1 + |x|^2)^{k/2} \le C_k (1 + |x|^k), \quad \forall x \in \mathbb{R}^d$$

Prove that there exist b_k , B_k s.t. $0 < b_k \le B_k < \infty$, and

(2)
$$b_k (1+|x|)^k \le (1+|x|^2)^{k/2} \le B_k (1+|x|)^k, \quad \forall x \in \mathbb{R}^d$$

To prove (1) we need to prove the following

$$(a) \quad \sup_{x \in \mathbb{R}^d} \frac{\left(1 + \left|x\right|^2\right)^{k/2}}{\left(1 + \left|x\right|^k\right)} < \infty \quad \Leftrightarrow \quad \sup_{0 \le r < \infty} \frac{\left(1 + r^2\right)^{k/2}}{\left(1 + r^k\right)} < \infty$$

(b)
$$\inf_{x \in \mathbb{R}^d} \frac{(1+|x|^2)^{k/2}}{(1+|x|^k)} > 0 \iff \inf_{0 \le r < \infty} \frac{(1+r^2)^{k/2}}{(1+r^k)} > 0$$

Set
$$f(r) = \frac{(1+r^2)^{k/2}}{(1+r^k)}$$
. Then $f(0)=1$ and $f(\infty)=1$.

Since f is continuous and f(0)=1 and $f(\infty)=1$, the supremum and infemum of f are attained. Since $0 < f(r) < \infty$, it follows that $\sup_{0 \le r < \infty} f(r) < \infty$ and $\inf f(r) > 0$.

The proof for (2) is similar.