Applied Analysis (APPM 5450): Final exam

$1.30 \mathrm{pm}-4.00 \mathrm{pm}$, May 3, 2011. Closed books.
Problem 1: (14p) Let d be a positive integer denoting dimension.
(a) (4p) State the definition of the Sobolev space $H^{s}\left(\mathbb{R}^{d}\right)$ for $s \geq 0$.
(b) (4p) State the Riemann-Lebesgue lemma. (You do not need to give the proof.)
(c) (6p) Prove that if s is large enough (how large?), then $H^{s}\left(\mathbb{R}^{d}\right) \subseteq C_{0}\left(\mathbb{R}^{d}\right)$.

Problem 2: (26p) Consider the Hilbert spaces $H_{1}=\ell^{2}(\mathbb{Z})$ and $H_{2}=L^{2}(\mathbb{R})$, and define operators $A_{1} \in \mathcal{B}\left(H_{1}\right)$ and $A_{2} \in \mathcal{B}\left(H_{2}\right)$ via

$$
\begin{array}{ll}
{\left[A_{1} u\right](n)=\arctan (n) u(n)} & n \in \mathbb{Z}, \\
{\left[A_{2} u\right](x)=\arctan (x) u(x)} & x \in \mathbb{R} .
\end{array}
$$

(a) (7p) Is A_{1} compact? Self-adjoint? Unitary? One-to-one? Does it have closed range? Please motivate your answers briefly.
(b) (6p) Specify $\sigma\left(A_{1}\right), \sigma_{\mathrm{p}}\left(A_{1}\right), \sigma_{\mathrm{c}}\left(A_{1}\right), \sigma_{\mathrm{r}}\left(A_{1}\right)$, and $\left\|A_{1}\right\|$. No motivation required.
(c) (7p) Is A_{2} compact? Self-adjoint? Unitary? One-to-one? Does it have closed range? Please motivate your answers briefly.
(d) (6p) Specify $\sigma\left(A_{2}\right), \sigma_{\mathrm{p}}\left(A_{2}\right), \sigma_{\mathrm{c}}\left(A_{2}\right), \sigma_{\mathrm{r}}\left(A_{2}\right)$, and $\left\|A_{2}\right\|$. No motivation required.

Problem 3: (14p) Define for $x \in \mathbb{R}$ and $n=1,2,3, \ldots$ the functions

$$
T_{n}(x)=\frac{n x}{n x^{2}+1} .
$$

Does $\left(T_{n}\right)_{n=1}^{\infty}$ converge in $\mathcal{S}^{*}(\mathbb{R})$? If so, to what? Please motivate your answer.

Problem 4: (22p) Consider the Banach space $X=L^{5}(\mathbb{R})$ equipped with the standard norm

$$
\|f\|_{5}=\left(\int_{\mathbb{R}}|f(x)|^{5} d x\right)^{1 / 5}
$$

(a) (6p) What is X^{*} ? Describe the action of an element of X^{*}.
(b) (6p) Which of the following statements are necessarily true (no motivation required):
(i) Any bounded sequence in X has a weakly convergent subsequence.
(ii) The weak-ᄎ topology on X is identical to the weak topology.
(iii) Any bounded set $\Omega \subseteq X$ is pre-compact in the weak topology.
(iv) Any bounded set $\Omega \subseteq X$ that is closed in the norm topology is compact in the weak topology.
(c) (10p) Let α be a real number and define the functions $\left(f_{n}\right)_{n=1}^{\infty}$ via

$$
f_{n}(x)=n^{\alpha} \chi_{[n, n+1 / n]}(x)= \begin{cases}0 & x<n \\ n^{\alpha} & n \leq x \leq n+1 / n \\ 0 & n+1 / n<x\end{cases}
$$

For which α does $\left(f_{n}\right)_{n=1}^{\infty}$ converge in norm? Weakly? Motivate your answer carefully.
Problem 5: (24p) Let h and g be measurable functions on \mathbb{R}, and let $\left(h_{n}\right)_{n=1}^{\infty}$ be a sequence of measurable functions on \mathbb{R}. Suppose that $h_{n} g \in L^{1}(\mathbb{R})$ for all n, and that

$$
\lim _{n \rightarrow \infty} h_{n}(x)=h(x) \quad \text { for every } x \in \mathbb{R} .
$$

Please answer the following questions, and provide brief motivations:
(a) (8p) Suppose that h_{n} and g are non-negative and that $\int h_{n} g=1 / n$.

Is it necessarily the case that $\int h g=0$?
(b) (8p) Suppose that $\left|h_{n}(x)\right| \leq|h(x)|$ for all x and n, that $h \in L^{2}(\mathbb{R})$, and that $g \in L^{2}(\mathbb{R})$.

Is it necessarily the case that $\lim _{n \rightarrow \infty} \int h_{n} g=\int h g$?
(c) (8p) Suppose that $0 \leq h_{1}(x) \leq h_{2}(x) \leq h_{3}(x) \leq \cdots$ for all x and set $c_{n}=\int h_{n} g$. Is the sequence $\left(c_{n}\right)_{n=1}^{\infty}$ necessarily convergent?
(And yes, if $c_{n} \rightarrow \infty$ or $c_{n} \rightarrow-\infty$, we do say that $\left(c_{n}\right)$ is convergent.)

