
Applied Analysis (APPM 5450): Final exam
1.30pm – 4.00pm, May 3, 2011. Closed books.

Problem 1: (14p) Let d be a positive integer denoting dimension.

(a) (4p) State the definition of the Sobolev space Hs(Rd) for s ≥ 0.

(b) (4p) State the Riemann-Lebesgue lemma. (You do not need to give the proof.)

(c) (6p) Prove that if s is large enough (how large?), then Hs(Rd) ⊆ C0(Rd).

Solution:

(c) Suppose f ∈ Hs. Since f = F∗f̂ , the R-L lemma states that f ∈ C0, whenever f̂ ∈ L1.

To show that f̂ ∈ L1, we use the Cauchy-Schwartz inequality:∫
|f̂ | =

∫
(1 + |t|2)−s/2 (1 + |t|2)s/2 |f̂(t)| ≤

(∫
(1 + |t|2)−s

)1/2

︸ ︷︷ ︸
=:Cs

(∫
(1 + |t|2)s |f̂(t)|2

)1/2

︸ ︷︷ ︸
=||f ||Hs

.

It follows that
∫
|f̂ | < ∞ if Cs < ∞, and to determine when this happens, we switch to polar

coordinates:

Cs =

∫
Rd

(1 + |t|2)−sdt = Ad

∫ ∞

0
(1 + r2)−s rd−1 dr,

where Ad is the surface area of the unit sphere in Rd. We see that Cs <∞ iff −2s+ d− 1 < −1,
which is to say if s > d/2.

Answer: Hs ⊆ C0 if s > d/2.



Problem 2: (26p) Consider the Hilbert spaces H1 = ℓ2(Z) and H2 = L2(R), and define operators
A1 ∈ B(H1) and A2 ∈ B(H2) via

[A1u](n) = arctan(n)u(n) n ∈ Z,
[A2u](x) = arctan(x)u(x) x ∈ R.

(a) (7p) Is A1 compact? Self-adjoint? Unitary? One-to-one? Does it have closed range?
Please motivate your answers briefly.

(b) (6p) Specify σ(A1), σp(A1), σc(A1), σr(A1), and ||A1||. No motivation required.

(c) (7p) Is A2 compact? Self-adjoint? Unitary? One-to-one? Does it have closed range?
Please motivate your answers briefly.

(d) (6p) Specify σ(A2), σp(A2), σc(A2), σr(A2), and ||A2||. No motivation required.

Solution: Let (en)n∈Z denote the canonical basis for ℓ2, and set fn = χ(n−1/2,n+1/2) ∈ H2.

(a) A1 is not compact. To see this, observe that (en)⇀ 0, but ||A1 en|| → π/2.

That A1 is self-adjoint is a trivial calculation. For u, v ∈ H1, we find

(A1u, v) =
∑
n∈Z

(
arctan(n)u(n)

)
v(n) =

∑
n∈Z

u(n)
(
arctan(n)v(n)

)
= (u, A1v).

A1 is not unitary or one-to-one since, e.g., A1 e0 = 0.

ran(A1) = Span(e0)
⊥ which is a closed set.

(b) σp(A1) = {arctan(n)}n∈Z, σc(A1) = {−π/2, π/2}, σr(A1) = ∅, and ||A1|| = π/2.

Motivation: For n ∈ Z, we have A1en = arctan(n) en so arctan(n) ∈ σp(A1). The points ±π/2 ∈ σ(A1)

since σ(A1) is closed, but A1± (π/2)I is one-to-one so ±π/2 /∈ σp(A1). σr(A1) = ∅ since A1 is self-adjoint.

Finally observe that if λ ̸= arctann and λ ̸= ±π/2, then A1 − λ I is invertible.

(c) A2 is not compact. To see this, observe that fn ⇀ 0, but ||A2 fn|| → π/2.

That A2 is self-adjoint is a trivial calculation. For u, v ∈ H2, we find

(A2u, v) =

∫
R

(
arctan(t)u(t)

)
v(t) =

∫
R
u(t)

(
arctan(t)v(t)

)
= (u, A2v).

A2 is not unitary since, e.g., ||A2 f0|| ≤ arctan(1/2)||f0|| < ||f0||.

A2 is one-to-one, since if A2u = 0, then arctan(x)u(x) = 0 a.e. which implies that u = 0.

ran(A2) is not closed since A2 is one-to-one, but not coercive.

(Set φn = n−1/2 χ[0,1/n], then ||φn|| = 1 but ||A2φn|| → 0.)

(d) σp(A2) = ∅, σc(A2) = [−π/2, π/2], σr(A2) = ∅, and ||A2|| = π/2.

Motivation: Set I = [−π/2, π/2]. The facts that A2 is self-adjoint and that ||A2|| = π/2 imply that

σ(A2) ⊆ I and that σr(A2) = ∅. If λ ∈ I, then A2 − λ I is not onto (e.g. e−x2 ∈ L2\ran(A2 − λI)) so in

fact I = σ(A2). Finally observe that A2 − λ I is one-to-one for any λ to see that σp(A2) = ∅.



Problem 3: (14p) Define for x ∈ R and n = 1, 2, 3, . . . the functions

Tn(x) =
nx

nx2 + 1
.

Does (Tn)
∞
n=1 converge in S∗(R)? If so, to what? Please motivate your answer.

Solution: First observe that for any non-zero x we have

lim
n→∞

Tn(x) =
1

x

so it seems reasonable to guess that Tn → T where T denotes the principal value of 1/x:

T (φ) = lim
ε↘0

∫
|x|≥ε

1

x
φ(x) dx =

∫ ∞

0

φ(x)− φ(−x)
x

dx.

To prove that Tn → T , we need to show that for any fixed φ ∈ S(R), we have Tn(φ) → T (φ).

Fix φ ∈ S(R) and set

ψ(x) =
φ(x)− φ(−x)

x
.

Now observe that

Tn(φ) =

∫ ∞

−∞

nx

nx2 + 1
φ(x) dx =

∫ ∞

0

nx

nx2 + 1
(φ(x)− φ(−x)) dx =

∫ ∞

0

nx2

nx2 + 1
ψ(x) dx.

It follows that

(1) |Tn(φ)− T (φ)| =
∣∣∣∣∫ ∞

0

(
nx2

nx2 + 1
− 1

)
ψ(x) dx

∣∣∣∣ ≤ ∫ ∞

0

1

nx2 + 1
|ψ(x)| dx.

The integrand in (1) converges pointwise to zero, and it is bounded by the function |ψ| which
satisfies1

∫
|ψ| <∞. The Lebesgue dominated convergence theorem then implies that

lim
n→∞

|T (φ)− T (φn)| = 0.

1To explicitly prove that
∫
|ψ| <∞, we observe that

∫ 1

0
|ψ| ≤

∫ 1

0
2 ||φ||1,0 and that

∫∞
1

|ψ| ≤
∫∞
1

1
x2 2 ||φ||0,1.



Problem 4: (22p) Consider the Banach space X = L5(R) equipped with the standard norm

||f ||5 =
(∫

R
|f(x)|5 dx

)1/5

.

(a) (6p) What is X∗? Describe the action of an element of X∗.

(b) (6p) Which of the following statements are necessarily true (no motivation required):
(i) Any bounded sequence in X has a weakly convergent subsequence.
(ii) The weak-⋆ topology on X is identical to the weak topology.
(iii) Any bounded set Ω ⊆ X is pre-compact in the weak topology.
(iv) Any bounded set Ω ⊆ X that is closed in the norm topology is compact in the weak

topology.

(c) (10p) Let α be a real number and define the functions (fn)
∞
n=1 via

fn(x) = nα χ[n, n+1/n](x) =

 0 x < n
nα n ≤ x ≤ n+ 1/n
0 n+ 1/n < x.

For which α does (fn)
∞
n=1 converge in norm? Weakly? Motivate your answer carefully.

Solution:

(a) The dual of L5 is Lq where q = 1/(1− 1/5) = 1/(4/5) = 5/4. What this means is that for any

functional φ ∈ (L5)∗ there is a unique g ∈ L5/4 such that

φ(f) =

∫ ∞

−∞
f(x) g(x) dx.

(b) The true statements are (i), (ii), and (iii). (Since L5 is reflexive, (ii) is true, and then Banach-
Alaoglu implies (i) and (iii). (iv) is not true since Ω need not be compact in the weak topology.
(E.g., Ω = {f ∈ L5 : ||f ||5 = 1} is closed in the norm topology, but not in the weak topology.)

(c) First observe that ||fn||55 =
∫ ∞

−∞
|fn|5 = n5α

∫ n+1/n

n
= n5α

1

n
= n5α−1.

Case 1 — α < 1/5: In this case, ||fn||5 → 0 so (fn) converges to zero in norm and weakly.

Case 2 — α > 1/5: In this case, ||fn||5 → ∞ so (fn) cannot converge either in norm or weakly.

Case 3 — α = 1/5: In this case, ||fn||5 = 1. Moreover, if n ̸= m, we find ||fn − fm||55 =
||fn||55 + ||fm||55 = 2 so the sequence does not converge in norm. We claim that (fn) converges

weakly to zero. To prove this, pick g ∈ L5/4 = (L5)∗. Then∣∣∣∣∫ fn g

∣∣∣∣ ≤ n1/5
∫ n+1/n

n
|g| ≤ {Hölder} ≤ n1/5

(∫ n+1/n

n

)1/5(∫ n+1/n

n
|g|5/4

)4/5

=

(∫ n+1/n

n
|g|5/4

)4/5

.

Now χ[n,n+1/n]|g|5/4 ≤ |g|5/4 ∈ L1, so by LDCT we find

lim
n→∞

∫ n+1/n

n
|g|5/4 = lim

n→∞

∫
R
χ[n,n+1/n]|g|5/4 = {LDCT} =

∫
R

(
lim
n→∞

χ[n,n+1/n]|g|5/4
)
= 0.

It follows that limn→∞
∣∣∫ fng∣∣ = 0.



Problem 5: (24p) Let h and g be measurable functions on R, and let (hn)
∞
n=1 be a sequence of

measurable functions on R. Suppose that hn g ∈ L1(R) for all n, and that

lim
n→∞

hn(x) = h(x) for every x ∈ R.

Please answer the following questions, and provide brief motivations:

(a) (8p) Suppose that hn and g are non-negative and that
∫
hn g = 1/n.

Is it necessarily the case that
∫
h g = 0?

(b) (8p) Suppose that |hn(x)| ≤ |h(x)| for all x and n, that h ∈ L2(R), and that g ∈ L2(R).

Is it necessarily the case that lim
n→∞

∫
hn g =

∫
h g?

(c) (8p) Suppose that 0 ≤ h1(x) ≤ h2(x) ≤ h3(x) ≤ · · · for all x and set cn =
∫
hn g.

Is the sequence (cn)
∞
n=1 necessarily convergent?

(And yes, if cn → ∞ or cn → −∞, we do say that (cn) is convergent.)

Solution: Set fn = hn g and f = h g. Then fn converges pointwise to f .

(a) Yes. Since fn are non-negative, Fatou’s lemma applies:∫
(lim inf fn) ≤ lim inf

∫
fn.

Now observe that
lim inf fn = hg

and

lim inf

∫
fn = lim inf(1/n) = 0.

(b) Yes, this follows from the Lebesgue dominated convergence theorem and Cauchy-Schwartz.
(Observe that |hng| ≤ |f |, and

∫
|f | =

∫
|hg| ≤ ||h||L2 ||g||L2 <∞.)

(c) No. All the convergence theorems are violated since the integrand hng need not be non-negative,
and no “dominator” need exist. For a counter-example, consider

hn = χ[0, n) g =

∞∑
n=0

(−1)nχ[n,n+1).

Then

cn =

∫
R
hng =

∫ n

0
g =

{
1 n odd
0 n even.



Grading guide:

(1) —

(2) In parts (a) and (c), the closed range part is worth 2 points and the other questions are
worth 1. If motivations are overall good, that gives one additional points.

(3) Observe that the function 1
xφ(x) is not integrable in the Lebesgue sense, and you have to

explicitly deal with the principal value.

Among solutions that did deal with the principal value, many were cavalier about inter-
changing the limits ϵ→ 0 and n→ ∞.

(Disturbingly, many solutions incorrectly evaluated the limit of
nx

nx2 + 1
as n→ ∞.)

(4) In (4b), two points were deducted for each incorrect answer.

(5) 3p for each correct answer, and a max of 5p for each correct motivation.

In problem (c), note that when dealing with convergence of integrals, we say that a sequence
of numbers that converges to infinity (or minus infinity) is “convergent.” This is a result
of working with the extended real numbers R. Observe that convergence to infinity is a
permissible outcome of the “monotone convergence theorem” for instance. As a result, an
example of functions hn and g that satisfy the assumptions and such that

∫
hng → ∞ is

not really a counter-example. However, given that this misunderstanding was ubiquitous,
it is possible that this point was not emphasized sufficiently in class, and such a “counter-
example” earned 7 out of the maximal 8 points.


