Problem 11.22: Set $T=\operatorname{sign}(t)$. We seek to prove that $\check{T}=\alpha \mathrm{PV}(1 / x)$ for some α. For $N=1,2,3, \ldots$, set $T_{N}=\chi_{[-N, N]} T$. Then $T_{N} \rightarrow T$ in \mathcal{S}^{*} since for any $\varphi \in \mathcal{S}$, we have

$$
\left\langle T_{n}, \varphi\right\rangle=\int_{-N}^{N} \operatorname{sign}(x) \varphi(x) d x \rightarrow \int_{-\infty}^{\infty} \operatorname{sign}(x) \varphi(x) d x=\langle T, \varphi\rangle
$$

Since the Fourier transform is a continuous operator on \mathcal{S}^{*}, we know that \check{T} is the limit of the sequence $\left(\check{T}_{N}\right)_{N=1}^{\infty}$.

Since $T_{N} \in L^{1}$, we can compute \check{T}_{N} by directly evaluating the integral. We find that

$$
\begin{equation*}
\check{T}_{N}(x)=\beta \frac{1-\cos (N x)}{x} \tag{1}
\end{equation*}
$$

for some constant β. If $\varphi \in \mathcal{S}$, then

$$
\begin{array}{r}
\left\langle\frac{1-\cos (N x)}{x}, \varphi\right\rangle=\int_{\mathbb{R}} \frac{1-\cos (N x)}{x} \varphi(x) d x=\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{1-\cos (N x)}{x} \varphi(x) d x \\
=\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \varphi(x) d x-\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \cos (N x) \frac{1}{x} \varphi(x) d x \\
\\
=\langle\operatorname{PV}(1 / x), \varphi\rangle-\langle\cos (N x) \operatorname{PV}(1 / x), \varphi\rangle
\end{array}
$$

It follows that formula (1) can be written $\check{T}_{N}(x)=\beta \mathrm{PV}(1 / x)-\beta \cos (N x) \mathrm{PV}(1 / x)$.
It remains to prove that $\cos (N x) \mathrm{PV}(1 / x) \rightarrow 0$ in \mathcal{S}^{\prime}. We find that

$$
\begin{aligned}
& \langle\cos (N x) \mathrm{PV}(1 / x), \varphi\rangle=\langle\mathrm{PV}(1 / x), \cos (N x) \varphi\rangle \\
& =\int_{0}^{\infty} \cos (N x) \frac{1}{x} \varphi(x) d x+\int_{-\infty}^{0} \cos (N x) \frac{1}{x} \varphi(x) d x \\
& \quad=\int_{0}^{\infty} \cos (N x) \frac{\varphi(x)-\varphi(-x)}{x} d x
\end{aligned}
$$

Now set $\psi(x)=\frac{\varphi(x)-\varphi(-x)}{x}$. Then ψ is a continuously differentiable, quickly decaying function on $[0, \infty)$, so we can perform a partial integration to obtain

$$
\begin{array}{r}
\left|\int_{0}^{\infty} \cos (N x) \frac{\varphi(x)-\varphi(-x)}{x} d x\right|=\left|\left[\frac{\sin (N x)}{N} \psi(x)\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{\sin (N x)}{N} \psi^{\prime}(x) d x\right| \\
\leq \frac{1}{N} \int_{0}^{\infty}\left|\psi^{\prime}(x)\right| d x
\end{array}
$$

If we can prove that $\int_{0}^{\infty}\left|\psi^{\prime}(x)\right| d x<\infty$, we will be done. First note that for $x \in[0,1], \psi(x)=2 \varphi^{\prime}(0)+O\left(x^{2}\right)$, so for $x \in[0,1]$, we have $\left|\psi^{\prime}(x)\right| \leq C_{1}$ for some finite C_{1}. For $x \in[1, \infty)$, we have

$$
\left|\psi^{\prime}(x)\right|=\left|\frac{\varphi^{\prime}(x)+\varphi^{\prime}(-x)}{x}-\frac{\varphi(x)-\varphi(-x)}{x^{2}}\right| \leq 2 \frac{\|\varphi\|_{1,1}}{x^{2}}+2 \frac{\|\varphi\|_{0,0}}{x^{2}}=\frac{C_{2}}{x^{2}} .
$$

and so

$$
\int_{0}^{\infty}\left|\psi^{\prime}(x)\right| d x \leq \int_{0}^{1} C_{1} d x+\int_{1}^{\infty} \frac{C_{2}}{x^{2}} d x<\infty
$$

