Homework set 14 — APPM5450, Spring 2011

From the book: 12.8, 12.16, 12.17, 12.18. Optional: 12.13, 12.14, 12.15.

Problem 1: Let λ be a real number such that $\lambda \in (0, 1)$, and let a and b be two non-negative real numbers. Prove that

(1) $a^{\lambda} b^{1-\lambda} \leq \lambda a + (1-\lambda) b,$

with equality iff a = b.

Hint: Consider the case b = 0 first. When $b \neq 0$, change variables to t = a/b.

Problem 2: [Hölder's inequality] Suppose that p is a real number such that 1 , and let <math>q be such that $p^{-1} + q^{-1} = 1$. Let (X, μ) be a measure space, and suppose that $f \in L^{P}(X, \mu)$ and $g \in L^{q}(X, \mu)$. Prove that $fg \in L^{1}(X, \mu)$, and that

(2)
$$||fg||_1 \le ||f||_p ||g||_q.$$

Prove that equality holds iff $\alpha |f|^p = \beta |g|^q$ for some α, β such that $\alpha \beta \neq 1$.

Hint: Consider first the case where $||f||_p = 0$ or $||g||_q = 0$. For the case $||f||_p ||g||_q \neq 0$, use (1) with

$$a = \left| \frac{f(x)}{||f||_p} \right|^p, \qquad b = \left| \frac{g(x)}{||g||_q} \right|^q, \qquad \lambda = \frac{1}{p}.$$

Problem 3: [Minkowski's inequality] Let (X, μ) be a measure space, and let p be a real number such that $1 \le p \le \infty$. Prove that for $f, g \in L^p(X, \mu)$, $||f + g||_p \le ||f||_p + ||g||_p$.

Hint: Consider the cases $p = 1, \infty$ separately. For $p \in (1, \infty)$, note that (3) $|f(x) + g(x)|^p \leq (|f(x)| + |g(x)|) |f(x) + g(x)|^{p-1}, \quad \forall x \in X.$ Then integrate both sides of (3) and apply (2) to the right hand side.