Homework set 14 - APPM5450, Spring 2011

From the book: $12.8,12.16,12.17,12.18$. Optional: $12.13,12.14,12.15$.
Problem 1: Let λ be a real number such that $\lambda \in(0,1)$, and let a and b be two non-negative real numbers. Prove that

$$
\begin{equation*}
a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b \tag{1}
\end{equation*}
$$

with equality iff $a=b$.
Hint: Consider the case $b=0$ first. When $b \neq 0$, change variables to $t=a / b$.
Problem 2: [Hölder's inequality] Suppose that p is a real number such that $1<p<\infty$, and let q be such that $p^{-1}+q^{-1}=1$. Let (X, μ) be a measure space, and suppose that $f \in L^{P}(X, \mu)$ and $g \in L^{q}(X, \mu)$. Prove that $f g \in L^{1}(X, \mu)$, and that

$$
\begin{equation*}
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q} \tag{2}
\end{equation*}
$$

Prove that equality holds iff $\alpha|f|^{p}=\beta|g|^{q}$ for some α, β such that $\alpha \beta \neq 1$.
Hint: Consider first the case where $\|f\|_{p}=0$ or $\|g\|_{q}=0$. For the case $\|f\|_{p}\|g\|_{q} \neq 0$, use (1) with

$$
a=\left|\frac{f(x)}{\|f\|_{p}}\right|^{p}, \quad b=\left|\frac{g(x)}{\|g\|_{q}}\right|^{q}, \quad \lambda=\frac{1}{p} .
$$

Problem 3: [Minkowski's inequality] Let (X, μ) be a measure space, and let p be a real number such that $1 \leq p \leq \infty$. Prove that for $f, g \in L^{p}(X, \mu)$,

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Hint: Consider the cases $p=1, \infty$ separately. For $p \in(1, \infty)$, note that

$$
\begin{equation*}
|f(x)+g(x)|^{p} \leq(|f(x)|+|g(x)|)|f(x)+g(x)|^{p-1}, \quad \forall x \in X \tag{3}
\end{equation*}
$$

Then integrate both sides of (3) and apply (2) to the right hand side.

