Homework set 2 - APPM5450

From the textbook: 7.13, 8.3, 8.4.
Problem 1: Let $T(t)$ denote the semigroup defined in Section 7.3 of the textbook. Prove that $T(t) \rightarrow I$ strongly as $t \searrow 0$. Prove that $T(t)$ does not converge in norm.

Problem 2: Prove that if P is a projection on a Hilbert space H, then the following three statements are equivalent:
(1) P is orthogonal, i.e. $\operatorname{ker}(P)=\operatorname{ran}(P)^{\perp}$.
(2) P is self-adjoint, i.e. $\langle P x, y\rangle=\langle x, P y\rangle \quad \forall x, y$.
(3) $\|P\|=0$ or 1 .

Problem 3: This problem is just for fun (meaning that you can safely skip it if you're short on time). The complete solution is given in the first half of Section 7.5 , but try to solve it without looking at the solution first.

The problem is to prove that if γ is a closed C^{1} curve in the plane of length 2π, then the area enclosed by γ is less than or equal to π, with equality occurring if and only if γ is a circle.

We parameterize γ using curve-length s as the parameter. Let f and g be functions in $H^{1}(\mathbb{T})$ such that $\gamma(s)=[f(s), g(s)]$. Recall from Green's theorem that the area A enclosed by the curve is given by

$$
\begin{equation*}
A=\frac{1}{2} \int_{\gamma}(x d y-y d x)=\frac{1}{2} \int_{0}^{2 \pi}(f(s) \dot{g}(s)-g(s) \dot{f}(s)) d s \tag{1}
\end{equation*}
$$

The problem is to find f and g that maximize A, subject to the constraint that the length or the curve is 2π :

$$
\begin{equation*}
2 \pi=\int_{0}^{2 \pi}\left(\dot{f}(s)^{2}+\dot{g}(s)^{2}\right) d s \tag{2}
\end{equation*}
$$

Write f and g as Fourier series:

$$
f(x)=\sum_{n=-\infty}^{\infty} \alpha_{n} e^{i n x}, \quad g(x)=\sum_{n=-\infty}^{\infty} \beta_{n} e^{i n x}
$$

Combine (1 and (2) to obtain

$$
\begin{equation*}
2 \pi-2 A=\int_{0}^{2 \pi}\left(\dot{f}(s)^{2}+\dot{g}(s)^{2}-f(s) \dot{g}(s)+g(s) \dot{f}(s)\right) d s \tag{3}
\end{equation*}
$$

Use Parseval's relation to rewrite (3) as a relation involving the Fourier coefficients α_{n} and β_{n} rather than f and g. Complete the squares to prove that $2 \pi-2 A$ is non-negative (one good way of completing the squares will involve four squares, two of which are $\left|n \alpha_{n}-i \beta_{n}\right|^{2}$ and $\left.\left|n \beta_{n}-i \alpha_{n}\right|^{2}\right)$. Finally, prove that equality occurs if and only if γ is a circle.

