Homework set 2 — APPM5450 Spring 2011 — Solutions:

Exercise 7.13: Set I = [0, 1] and consider the equation

(1) $i u_t = -u_{xx}, \quad x \in I, \quad t > 0,$

for a complex valued function u = u(x, t) with homogeneous boundary conditions,

(2)
$$u(0,t) = u(1,t) = 0,$$

and initial condition

$$u(x,0) =$$

$$e_n(x) = \sqrt{2} \, \sin(n \, x)$$

f(x).

Then $(e_n)_{n=1}^{\infty}$ forms an ON-basis for $L^2(I)$. We look for a solution

(4)
$$u(x,t) = \sum_{n=1}^{\infty} \alpha_n(t) e_n(x).$$

Inserting (4) into (1) and (3), we find that α_n must satisfy

$$i \, \alpha'_n = n^2 \, \alpha_n, \qquad \alpha_n(0) = f_n,$$

where $f_n = (e_n, f)$. The solution is

$$\alpha_n(t) = f_n \, e^{-i \, n^2 \, t}.$$

Since $|\alpha_n(t)| = |f_n|$ for any t, it follows directly from Parseval that

$$||u(t)||_{L^{2}(I)}^{2} = \sum_{n=1}^{\infty} |\alpha_{n}(t)|^{2} = \sum_{n=1}^{\infty} |f_{n}|^{2} = ||f||^{2}$$

and that (using that the cosines also form an ON-set)

$$||u_x(t)||_{L^2(I)}^2 = ||\sum_{n=1}^{\infty} f_n e^{-in^2 t} n \sqrt{2} \cos(nx)||_{L^2(I)}^2 = \sum_{n=1}^{\infty} |n f_n|^2 = ||f_x||^2.$$

For a direct proof, set $v = \operatorname{Re}(u)$ and $w = \operatorname{Im}(u)$ so that u = v + iw. Then (1) takes the form

$$v_t = -w_{xx} \qquad w_t = v_{xx}.$$

Now

$$\begin{aligned} \frac{d}{dt} \int_0^1 |u|^2 \, dx &= \frac{d}{dt} \int_0^1 (v^2 + w^2) \, dx = 2 \int_0^1 (v_t \, v + w_t \, w) \, dx \\ &= 2 \int_0^1 (-w_{xx} \, v + v_{xx} \, w) \, dx = 2 \int_0^1 (w_x \, v_x - v_x \, w_x) \, dx = 0. \end{aligned}$$

The second to last step was partial integration where the boundary terms vanish due to (2). Analogously,

$$\frac{d}{dt} \int_0^1 |u_x|^2 dx = \frac{d}{dt} \int_0^1 (v_x^2 + w_x^2) dx = 2 \int_0^1 (v_{xt} v_x + w_{xt} w_x) dx$$
$$= 2 \int_0^1 (-v_t v_{xx} - w_t w_{xx}) dx = 2 \int_0^1 (-v_t w_t + w_t v_t) dx = 0.$$

In the second calculation we used differentiation, (2) takes the form

$$v_t(0,t) = v_t(1,t) = w_t(0,t) = w_t(1,t) = 0,$$
 $t > 0.$

Exercise 8.3: Let P and Q be orthogonal projections. Set $M = \operatorname{ran}(P)$ and $N = \operatorname{ran}(Q)$. TFAE:

(a) $M \subseteq N$ (b) QP = P(c) PQ = P

(d) $||Px|| \le ||Qx|| \quad \forall x$ (e) $(x, Px) \le (x, Qx) \quad \forall x$

Proof:

(a) \Rightarrow (b): Assume $M \subseteq N$. Then for any $x, Px \in M \subseteq N$, so QPx = Px.

(b) \Rightarrow (a): Assume QP = P. Pick $y \in M$. Then y = Px for some x. Then Qy = QPx = Px = y so $y \in N$.

(a) \Leftrightarrow (c):

$$M \subseteq N \qquad \Leftrightarrow \qquad N^{\perp} \subseteq M^{\perp}$$
$$\Leftrightarrow \qquad Py = 0 \quad \forall y \in N^{\perp}$$
$$\Leftrightarrow \qquad P(I-Q)x = 0 \quad \forall x$$
$$\Leftrightarrow \qquad P = PQ$$

(c) \Rightarrow (d): Assume PQ = P. Since $||P|| \le 1$ we have $||Px|| = ||PQx|| \le ||Qx||$ for any x.

 $(\mathbf{d}) \Rightarrow (\mathbf{a})$: Assume that (a) is false. Then there is an $x \in M \setminus N$. Since $x \in M$ we have x = Px and so

$$||Px||^{2} = ||x||^{2} = ||Qx + (I - Q)x||^{2} = ||Qx||^{2} + ||(I - Q)x||^{2}.$$

Now observe that ||(I-Q)x|| > 0 since $x \notin N$. Consequently,

$$||Qx||^{2} = ||Px||^{2} - ||(I - Q)x||^{2} < ||Px||^{2}$$

so (d) cannot hold true.

 $\underline{(d)} \Leftrightarrow \underline{(e)}$: Simply observe that $(x, Px) = (x, P^2x) = (Px, Px) = ||Px||^2$ and analogously $\overline{(x, Qx)} = ||Qx||^2$.

Note: You may want to draw a diagram over the implications to convince yourself that all equivalencies have been proven.

 $\mathbf{2}$

Exercise 8.4: First we prove that $P_n \to I$ strongly. Fix any $x \in H$. Since $\bigcup_{n=1}^{\infty} \operatorname{ran}(P_n) = H$, we know that $x \in \operatorname{ran}(P_N)$ for some specific N. Then, since $\operatorname{ran}(P_n) \subseteq \operatorname{ran}(P_{n+1})$, we see that $x \in \operatorname{ran}(P_m)$ for any $m \ge N$. Consequently, $P_m x = x$ for any $m \ge N$ so $P_n x \to x$ (very rapidly!).

Next suppose that $||I - P_n|| \to 0$. Then there is some N such that $||I - P_N|| \le 1/2$. Now observe that $I - P_N$ is itself an orthogonal projection (onto ker (P_N)) so it can only have norms 0 and 1. It follows that $||I - P_N|| = 0$, which is to say that $P_N = I$. Since $H = \operatorname{ran}(P_N) \subseteq \operatorname{ran}(P_{N+1}) \subseteq \operatorname{ran}(P_{N+2}) \subseteq \cdots$ we see that $P_n = I$ for any $n \ge N$.

Problem 1: Let T(t) denote the semigroup defined in Section 7.3 of the textbook. Prove that $T(t) \rightarrow I$ strongly as $t \searrow 0$. Prove that T(t) does not converge in norm.

Solution: We consider a slightly more general problem. Let $(e_n)_{n=1}^{\infty}$ be an ON-basis for a Hilbert space H, and consider for $t \ge 0$ the operator

$$T(t)f = \sum_{n=1}^{\infty} f_n e^{-n^2 t} e_n.$$

We will show that as $t \searrow 0, T(t) \rightarrow I$ strongly but not in norm.

To show $T(t) \to I$ strongly, fix $f \in H$. Fix $\varepsilon > 0$. Set $f_n = (e_n, f)$ and pick N such that $\sum_{n=N+1}^{\infty} |f_n|^2 < \varepsilon^2$. Then by Parseval

$$||T(t)f - f||^{2} = \sum_{n=1}^{N} \left| f_{n} \left(e^{-n^{2}t} - 1 \right) \right|^{2} + \sum_{n=N+1}^{\infty} \left| f_{n} \left(e^{-n^{2}t} - 1 \right) \right|^{2}$$
$$\leq \sum_{n=1}^{N} \left| f_{n} \left(e^{-n^{2}t} - 1 \right) \right|^{2} + \sum_{n=N+1}^{\infty} 4 \left| f_{n} \right|^{2} \leq \sum_{n=1}^{N} \left| f_{n} \left(e^{-n^{2}t} - 1 \right) \right|^{2} + 4\varepsilon^{2}.$$

Since only finitely many terms depend on t, we can now easily take the limit as $t \searrow 0$,

$$\limsup_{t \searrow 0} ||T(t)f - f||^2 \le 4\varepsilon^2.$$

Since ε was arbitrary, we see that $\lim_{t \searrow 0} ||T(t)f - f|| = 0$.

To show that T(t) does not converge to I in norm, we simply observe that for any t > 0

$$||T(t) - I|| \ge \sup_{n} ||(T(t) - I) e_{n}|| = \sup_{n} |e^{-n^{2}t} - 1| = 1.$$

Problem 2: Suppose P is a projection on a Hilbert space H. TFAE:

- (a) P is orthogonal, *i.e.* $\ker(P) = \operatorname{ran}(P)^{\perp}$.
- (b) P is self-adjoint, *i.e.* $\langle P x, y \rangle = \langle x, P y \rangle \quad \forall x, y.$
- (c) ||P|| = 0 or 1.

Proof:

$$\underbrace{(\mathbf{a}) \Rightarrow (\mathbf{b}):}_{(Px, y) = (\underbrace{Px}_{\in \operatorname{ran}(P)}, Py + \underbrace{(I-P)y}_{\in \ker(P)}) = (Px, Py) = (Px + (I-P)x, Py) = (x, Py).$$

(b) \Rightarrow (c): Assume that (b) holds. Then for any x,

$$||Px||^{2} = (Px, Px) = (P^{2}x, x) = (Px, x) \le ||Px|| \, ||x||,$$

so $||P|| \leq 1$. Obviously it is possible for ||P|| to be zero. We need to prove that the only possible non-zero value of ||P|| is one. To this end, note that if $P \neq 0$, then $\operatorname{ran}(P) \neq \{0\}$. Now observe that if x is a non-zero element in $\operatorname{ran}(P)$, we have Px = x so $||P|| \geq 1$.

 $\underline{(c) \Rightarrow (a)}$: Assume that (a) does not hold. Then there exist $x \in \operatorname{ran}(P)$ and $y \in \ker(P)$ such that $\overline{(x, y) \neq 0}$. Set $\alpha = \overline{(x, y)}/|(x, y)|$ and $z = \alpha y$. Then $z \in \ker(P)$ and $(x, z) = |(x, y)| \in \mathbb{R}_+$. Set w = x - zt.

Then ||Pw|| = ||x||, and

 $||w||^2 = ||x||^2 - 2t(x, z) + t^2 ||z||^2.$ For small t, we see that ||w|| < ||x|| = ||Pw|| so ||P|| > 1.

No solution is given for Problem 3 since the problem itself outlines precisely how to solve it -just fill in the details.