Homework 5

9.1) Prove that
$$\rho(A^*) = \overline{\rho(A)}$$
 where $\overline{\rho(A)}$ is the set $\{\lambda \in C \mid \overline{\lambda} \in \rho(A)\}$.

Assume $\lambda \in \rho(A)$. Then $(A - \lambda I)^{-1}$ and $((A - \lambda I)^{-1})^*$ exist and are bounded. We need to show that $((A - \lambda I)^{-1})^* = (A^* - \overline{\lambda} I)^{-1}$. If we show that $(B^{-1})^* = (B^*)^{-1}$ then this follows immediately. Say y = By'. Then $\frac{\langle (B^{-1})^* x, y \rangle = \langle x, B^{-1}y \rangle = \langle x, y' \rangle}{\langle (B^*)^{-1}x, y \rangle = \langle (B^*)^{-1}x, By' \rangle = \langle B^*(B^*)^{-1}x, y' \rangle = \langle x, y' \rangle}$ So $(B^{-1})^* = (B^*)^{-1}$ and we are done.

9.2) If λ is an eigenvalue of A then $\overline{\lambda}$ is in the spectrum of A^* . What can you say about the type of spectrum $\overline{\lambda}$ belongs to?

First we show that $\overline{\lambda}$ is in the spectrum of A^* : $\lambda \in \sigma_p(A) \Rightarrow \exists x \neq 0 \text{ s.t. } (A - \lambda I)x = 0 \forall y$ This holds iff $(x, (A^* - \overline{\lambda}I)y) = 0 \forall y$ which holds iff $x \perp ran(A^* - \overline{\lambda}I) \Rightarrow \overline{\lambda} \in \sigma(A^*)$ Now $\overline{\lambda} \notin \sigma_c(A)$ because $(A^* - \overline{\lambda}I)$ is dense iff $(A^* - \overline{\lambda}I)^{\perp} = 0$, but $x \neq 0$. So $\overline{\lambda}$ is in either the point or residual spectrum of A^* . 9.3) Suppose that A is a bounded linear operator of a Hilbert space and $\lambda, \mu \in \rho(A)$. Prove that the resolvent R_{λ} of A satisfies $R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\lambda}R_{\mu}$.

First note that $A^{-1} - B^{-1} = -A^{-1}(A - B)B^{-1}$ (we use this below in the equality denoted by *) Then $R_{\lambda} - R_{\mu} = (A - \lambda I)^{-1} - (A - \mu I)^{-1} \stackrel{*}{=} \underbrace{(A - \lambda I)^{-1}}_{=R_{\lambda}} \underbrace{((A - \lambda I) - (A - \mu I))}_{=(\mu - \lambda)} \underbrace{(A - \mu I)^{-1}}_{=R_{\mu}} = (\mu - \lambda)R_{\lambda}R_{\mu}$

9.4) Prove that the spectrum of an orthogonal projection P is either $\{0\}$ (in which case P=0), $\{1\}$ (in which case P=I), or $\{0,1\}$.

Assume that P is an orthogonal projection. Then $H = ranP \oplus \ker P$ where $ranP = (\ker P)^{\perp}$. **Case 1)** $ranP = \{0\}$ Then P = 0 and $Px = 0 \forall x$ so $0 \in \sigma_p(P)$ If $\lambda \neq 0$ then $(P - \lambda I)^{-1} = \frac{1}{\lambda}I$ so $\lambda \in \rho(P)$

Case 2) ker $P = \{0\}$ Then $ranP = (\ker P)^{\perp} = H$ so P = I and $Px = x \forall x$ so $1 \in \sigma_p(P)$ If $\lambda \neq 1$ then $(P - \lambda I)^{-1} = \frac{1}{1 - \lambda}I$ so $\lambda \in \rho(P)$

Case 3)

$$ranP \neq \{0\}, \ker P \neq \{0\}$$
If $x \neq 0, x \in ranP$ then $x = Px$ so $1 \in \sigma_p(P)$
If $x \neq 0, x \in \ker P$ then $0 = Px$ so $0 \in \sigma_p(P)$
If $\lambda \neq 0, 1$ then $(P - \lambda I)^{-1} = \frac{1}{1 - \lambda}P - \frac{1}{\lambda}(I - P)$ so $\lambda \in \rho(P)$

9.5) A is a bounded, nonnegative operator on a complex Hilbert space. Prove that $\sigma(A) \subset [0, \infty)$.

First note that A nonnegative implies A self-adjoint and A self-adjoint implies $\sigma(A) \in R$. Also, A bounded implies $\sigma(A) \subseteq [-\|A\|, \|A\|]$.

Assume $\lambda < 0$. We need to show that $(A - \lambda I)$ is invertible. Since A is self-adjoint we know that $(Au, u) = (u, Au) \in R$ so:

$$\left\| (A - \lambda I) u \right\|^2 = \left\| \underline{Au} \right\|^2 - 2 \underbrace{\lambda}_{\leq 0} \underbrace{(Au, u)}_{\geq 0} + \lambda^2 \left\| u \right\|^2 \geq \lambda^2 \left\| u \right\|^2 \text{ so } (A - \lambda I) \text{ is coercive. A coercive implies}$$

$$\begin{cases} ran(A - \lambda I) closed \Rightarrow \lambda \notin \sigma_c(A) \\ (A - \lambda I) one - to - one \Rightarrow \lambda \notin \sigma_p(A) \end{cases}$$
 A self-adjoint implies $\sigma_r(A) = \{empty\}.$

Since λ is not in any of the parts of the spectrum it is not in the spectrum and our proof is complete.

G is a multiplication operator on $L^2(R)$ defined by Gf(x) = g(x)f(x) where g is 9.6) continuous and bounded. Prove that G is a bounded linear operator on $L^2(R)$ and that its spectrum is given by $\sigma(G) = \overline{\{g(x) \mid x \in R\}}$. Can an operator of this form have eigenvalues?

G is a bounded linear operator:

$$\|G\| = \sup_{\|f\|=1} \|Gf\| = \sup_{\|f\|=1} \left(\int |g(x)f(x)|^2 dx \right)^{1/2} \le \underbrace{\sup_{\|g\|_u} |g(x)| \sup_{\|f\|=1} \left(\int |f(x)|^2 dx \right)^{1/2}}_{=\|g\|_u} = \|g\|_u$$

Spectrum: Set $\Omega = \overline{\{g(x) \mid x \in R\}}$. Suppose $\lambda \notin \Omega$. Then $\exists \varepsilon > 0$ s.t. $|\lambda - g(x)| \ge \varepsilon \forall x$. Note that

$$(G - \lambda I)\frac{1}{g(x) - \lambda}f(x) = \frac{g(x)}{g(x) - \lambda}f(x) - \frac{\lambda}{g(x) - \lambda}f(x) = f(x) \Longrightarrow (G - \lambda I)^{-1}f(x) = \frac{1}{g(x) - \lambda}f(x)$$

Then

$$\left\| (G - \lambda I)^{-1} \right\| = \sup_{\|f\|=1} \left\| (G - \lambda I)^{-1} f \right\| = \sup_{\|f\|=1} \left(\int \left| \frac{1}{g(x) - \lambda} f(x) \right|^2 dx \right)^{1/2} \le \sup_{\leq \varepsilon} \left| \frac{1}{g(x) - \lambda} \left| \sup_{\|f\|=1} \left(\int \left| f(x) \right|^2 dx \right)^{1/2} \right| \le \varepsilon$$

Suppose $\lambda \in \Omega$. Then there exists $x_n \in R$ s.t. $g(x_n) \rightarrow \lambda$ For j = 1, 2, 3... pick n_j s.t. $\left|g(x_{n_j}) - \lambda\right| \le \frac{1}{j}$

Since g is continuous at x_{n_j} there exists δ s.t. $x \in B_{\delta}(x_{n_j}) \Rightarrow |g(x_{n_j}) - g(x)| \le \frac{1}{i}$

Set
$$u_{n_j}(x) = \begin{cases} \sqrt{j/2} & x \in B_{\delta}(x_{n_j}) \\ 0 & else \end{cases}$$

$$\left\| (G - \lambda I) u_{n_j} \right\|^2 = \int \left| g(x) - \lambda \right|^2 \left| u_{n_j}(x) \right|^2 dx \stackrel{TI}{\leq} \int \left(\underbrace{\left| g(x) - g(x_{n_j}) + \underbrace{\left| g(x_{n_j}) - \lambda \right|}_{\leq l/j} \right)^2 \left| u_{n_j}(x) \right|^2 dx \leq 1 \end{cases}$$

Then

Then

$$\leq \frac{4}{j^2} \underbrace{\int \left| u_{n_j}(x) \right|^2 dx}_{=1} = \frac{4}{j^2} \xrightarrow{j \to \infty} 0$$

The inequality denoted by "TI" uses the triangle inequality.

We have shown that $(G - \lambda I)$ is not continuously invertible (so λ is in the spectrum).

Eigenvalues: Suppose $(G - \lambda I)u = 0$ for $u \neq 0$.

Then $(g(x) - \lambda)u(x) = 0$ but $u \neq 0$. This is possible if and only if the set $\{x : g(x) = \lambda\}$ has positive (non-zero) measure).

9.7) Let
$$K: L^2([0,1]) \to L^2([0,1])$$
 be the integral operator defined by $Kf(x) = \int_0^x f(y) dy$.
a) Find the adjiont operator K^* .
 $(Kf,g) = \int_0^1 \int_0^x \overline{f(y)} dy g(x) dx = \int_0^1 \int_0^x \overline{f(y)} g(x) dy dx = \int_0^1 \int_y^1 \overline{f(y)} g(x) dx dy = \int_0^1 \overline{f(y)} \int_y^1 g(x) dx dy = (f, K^*g)$
So $K^*g(x) = \int_y^1 g(y) dy$

- **b)** Show that $||K|| = 2/\pi$.
- Set $\phi_n(x) = \sqrt{2} \cos\left(\frac{n\pi x}{2}\right)$. Then $(\phi_n)_{n=1}^{\infty}$ is an ON-basis for $L^2([0,1])$. Then $[K\phi_n](x) = \sqrt{2} \int_0^x \cos\left(\frac{n\pi x}{2}\right) dy = \left[\frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right)\right]_0^x = \sqrt{2} \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right)$. Set $\psi_n(x) = \sqrt{2} \sin\left(\frac{n\pi x}{2}\right)$. Then $(\psi_n)_{n=1}^{\infty}$ is also an ON-basis for $L^2([0,1])$. We can write $x = \sum_{n=1}^{\infty} \alpha_n \phi_n$. Then $||Kx||^2 = \left\|\sum_{n=1}^{\infty} \alpha_n K\phi_n\right\|^2 = \left\|\sum_{n=1}^{\infty} \alpha_n \frac{2}{n\pi} \psi_n\right\|^2 = \sum_{n=1}^{\infty} |\alpha_n|^2 \left(\frac{2}{n\pi}\right)^2 \le \frac{4}{\pi^2} \sum_{n=1}^{\infty} |\alpha_n|^2 = \frac{4}{\pi^2} ||x||^2$ so $||K|| \le \frac{2}{\pi}$. Since $||K\phi_1||^2 = \frac{2}{\pi} ||\phi_1||^2$ we also have that $||K|| \ge \frac{2}{\pi}$. Together we get $||K|| = 2/\pi$. Remark: We have determined the singular value decomposition of K: $Kx = \sum_{n=1}^{\infty} \sigma_n \psi_n \langle \phi_n, x \rangle$ where $\sigma_n = \frac{2}{n\pi}$ are the singular values.

We can then conclude that $||K|| = \max_{n} \sigma_{n} = \sigma_{1} = \frac{2}{\pi}$.

c) Show that the spectral radius of K is equal to zero.

$$\begin{bmatrix} K^{2}u \end{bmatrix}(x) = \int_{0}^{x} \int_{0}^{y} u(z)dzdy = \int_{0}^{x} u(z) \int_{z}^{x} dydz = \int_{0}^{x} (x-z)u(z)dz$$

$$\begin{bmatrix} K^{3}u \end{bmatrix}(x) = \int_{0}^{x} \int_{0}^{y} (y-z)u(z)dzdy = \int_{0}^{x} u(z) \int_{z}^{x} (y-z)dydz = \int_{0}^{x} \frac{(x-z)^{2}}{2}u(z)dz$$

This generalizes to $\begin{bmatrix} K^{n}u \end{bmatrix}(x) = \dots = \int_{0}^{x} \frac{(x-z)^{n-1}}{(n-1)!}u(z)dz$
So $\| K^{n}u \|^{2} = \int_{0}^{1} \left(\int_{0}^{x} \frac{(x-z)^{n-1}}{(n-1)!}u(z)dz \right)^{2} dx \leq \frac{1}{(n-1)!} \int_{0}^{1} \underbrace{\left(\int_{0}^{x} (x-z)^{2(n-1)} dz \right)^{2}}_{\leq 1} \underbrace{\left(\int_{0}^{u} u^{2}(y)dz \right)^{2}}_{\leq \|u\|^{2}} dx \leq \frac{\|u\|^{2}}{(n-1)!}$
This implies that $\| K^{n} \|^{2} \leq \frac{1}{(n-1)!}$, so $r(K) = \limsup_{n \to \infty} \left(\frac{1}{(n-1)!} \right)^{1/n} = 0$

d) Show that 0 belongs to the continuous spectrum of K.

Set Ku = v.

Pick $\tilde{v} \in P$ s.t. $||v - \tilde{v}|| < \varepsilon$ where P is the set of functions $(\sin(n\pi x))_{n=1}^{\infty}$. We have previously shown that this is a basis.

Set $\widetilde{u} = \widetilde{v}'$ then $\widetilde{u} \in L^2(I)$ and $[K\widetilde{u}](x) = \int_0^x \widetilde{v}(y) dy = \widetilde{v}(x) - \widetilde{v}(0) = \widetilde{v}(x)$ The final equality uses the fact that $\sin(0) = 0$.

So $\widetilde{v}(x) \in ranK$ and $||v - \widetilde{v}|| < \varepsilon$, hence 0 is in the continuous spectrum.

9.8) Define the right shift operator S on $l^2(Z)$ by $S(x)_k = x_{k-1} \forall k \in Z$ where $x = (x_k)_{k=-\infty}^{\infty}$ is in $l^2(Z)$. Prove the following (a-d).

First recall the Fourier transform: $F^{-1}x = \sum_{n=-\infty}^{\infty} x_n \frac{e^{itn}}{\sqrt{2\pi}}$ Set $\widetilde{S} = F^{-1}SF$, then $(\widetilde{S} - \lambda I) = F^{-1}SF - \lambda F^{-1}F = F^{-1}(S - \lambda I)F$ Now $\lambda \in \sigma_{\alpha}(S) \Leftrightarrow \lambda \in \sigma_{\alpha}(\widetilde{S}), \quad \alpha = p, c, r$ Then $F^{-1}Sx = \sum_{n=-\infty}^{\infty} x_{n-1} \frac{e^{itn}}{\sqrt{2\pi}} = e^{it} \sum_{n=-\infty}^{\infty} x_{n-1} \frac{e^{it(n-1)}}{\sqrt{2\pi}} = e^{it} \widetilde{x}(t)$ so $[\widetilde{S}\widetilde{x}](t) = e^{it}\widetilde{x}(t)$ Assume $|\lambda| \neq 1$. Given $\widetilde{y} \in L^2(T)$ we have $(S - \lambda I) \frac{1}{e^{it} - \lambda} \widetilde{y}(t) = \widetilde{y}(t)$ so $(S - \lambda I)$ is bijective. $(S - \lambda I)$ bijective implies $\lambda \in \rho(\widetilde{S})$ (*) Assume $|\lambda| = 1$ and $(\widetilde{S} - \lambda I)\widetilde{x} = 0$. Then $(e^{it} - \lambda I)\widetilde{x}(t) = 0$ almost everywhere which implies $\widetilde{x} = 0$. This means that $(\widetilde{S} - \lambda I)$ is one-to-one, so we can immediately conclude that $\lambda \notin \sigma_p(\widetilde{S})$. (**) Note that $1 \notin ran(\widetilde{S} - \lambda I) \Rightarrow ran(\widetilde{S} - \lambda I) \neq L^2(T)$ (***) However, given a $\widetilde{y} \in L^2(T)$ set $\widetilde{y}_m(t) = \begin{cases} \widetilde{y}(t) & |\lambda - e^{it}| \ge 1/n \\ 0 & else \end{cases}$ then $\widetilde{y}_m(t) = \frac{\widetilde{y}_m(t)}{e^{it} - \lambda} = \widetilde{y}_m(t)$ (****)

a) The point spectrum of S is empty.

The equations (*) and (**) above show that λ isn't in the point spectrum for $|\lambda| \neq 1$ and $|\lambda| = 1$ respectively. Combined they show that the point spectrum is empty.

b)
$$ran(\lambda I - S) = l^2(Z)$$
 for every $\lambda \in C$ with $|\lambda| > 1$

Equation (*) above shows this.

c)
$$ran(\lambda I - S) = l^2(Z)$$
 for every $\lambda \in C$ with $|\lambda| < 1$

Equation (*) above shows this.

d) The spectrum of S consists of the unit circle $\{\lambda \in C \mid |\lambda| = 1\}$ and is purely continuous.

Equation (*) shows that λ is not in the spectrum for $|\lambda| \neq 1$. Equations (***) and (****) combine to show that all λ with $|\lambda| = 1$ are in the continuous spectrum.

9.9) Define the discrete Laplacian operator Δ on $l^2(Z)$ by $(\Delta x)_k = x_{k-1} - 2x_k + x_{k+1}$, where $x = (x_k)_{k=-\infty}^{\infty}$. Show that $\Delta = S + S^* - 2I$ and prove that the spectrum of Δ is entirely continuous and consists of the interval [-4,0].

Noting that on $l^2(Z)$ the adjoint of the right shift operator is the left shift operator (see problem 3 of homework 3), the fact that $\Delta = S + S^* - 2I$ follows directly.

Spectrum: As we did in the previous problem we begin by switching to the Fourier domain. Then

$$F^{-1}\Delta x = \sum_{n=-\infty}^{\infty} (x_{n-1} + x_{n+1} + 2x_n) \frac{e^{itn}}{\sqrt{2\pi}} = e^{it} \sum_{n=-\infty}^{\infty} x_{n-1} \frac{e^{it(n-1)}}{\sqrt{2\pi}} + e^{-it} \sum_{n=-\infty}^{\infty} x_{n+1} \frac{e^{it(n+1)}}{\sqrt{2\pi}} + 2\sum_{n=-\infty}^{\infty} x_n \frac{e^{itn}}{\sqrt{2\pi}} = (e^{it} + e^{-it} + 2)\widetilde{x}(t)$$
Note that $e^{it} + e^{-it} + 2 \leq \sup |e^{it}| + \sup |e^{-it}| + 2 \leq 4$
Assume $|\lambda| > 4$. Given $\widetilde{y} \in L^2(T)$ we have $(\Delta - \lambda I) \frac{1}{(e^{it} + e^{-it} + 2) - \lambda} \widetilde{y}(t) = \widetilde{y}(t)$ so $(\Delta - \lambda I)$ is bijective.
Note that $e^{it} + e^{-it} + 2 \geq -\sup |e^{it}| - \sup |e^{-it}| + 2 \geq 0$
Assume $|\lambda| < 4$. Given $\widetilde{y} \in L^2(T)$ we have $(\Delta - \lambda I) \frac{1}{(e^{it} + e^{-it} + 2) - \lambda} \widetilde{y}(t) = \widetilde{y}(t)$ so $(\Delta - \lambda I)$ is bijective.
So the spectrum consists of the interval $[-4,0]$. We just need to show that it is continuous.
Continuous: Note that $1 \notin ran(\widetilde{\Delta} - \lambda I) \Longrightarrow ran(\widetilde{\Delta} - \lambda I) \neq L^2(T)$
However, given a $\widetilde{y} \in L^2(T)$ set $\widetilde{y}_m(t) = \left\{ \widetilde{y}(t) \ |\lambda - (e^{it} + e^{-it} + 2)| \geq 1/n$ then $\widetilde{y}_m(t) \longrightarrow y(t)$

and $\widetilde{y}_m \in ran(\widetilde{\Delta} - \lambda I)$ since $(\widetilde{\Delta} - \lambda I) \frac{\widetilde{y}_m(t)}{(e^{it} + e^{-it} + 2) - \lambda} = \widetilde{y}_m(t)$

9.10) Posted separately on the website.

9.11) The approximate spectrum is defined $\sigma_{app}(A) = \{\lambda : \exists (x_n) \ s.t. \|x_n\| = 1 \text{ and } \|(A - \lambda I)x_n\| \to 0\}.$ Prove the following: (a) $\sigma_{app}(A) \subseteq \sigma(A)$ (b) $\sigma_p(A) \subseteq \sigma_{app}(A)$ (c) $\sigma_c(A) \subseteq \sigma_{app}(A)$

(d) Give an example to show that a point in the residual spectrum need not belong to the approximate spectrum.

a) Prove
$$\sigma_{app}(A) \subseteq \sigma(A)$$

Assume $\lambda \in \sigma(A)^c = \rho(A)$. Then $(A - \lambda I)^{-1}$ is a bounded operator. If (x_n) is any sequence of
vectors with $||x_n|| = 1$ then set $y_n = (A - \lambda I)x_n$.
Then $1 = ||x_n|| = ||(A - \lambda I)^{-1}y_n|| \le ||(A - \lambda I)^{-1}|| \cdot ||y_n||$.
Also $||y_n|| = ||(A - \lambda I)x_n|| \ge \frac{1}{||(A - \lambda I)^{-1}||}$ so $\lambda \notin \sigma_{app}(A)$.

b) Prove $\sigma_p(A) \subseteq \sigma_{app}(A)$

Assume $\lambda \in \sigma_p(A)$. Then there exists an $x \neq 0$ s.t. $Ax = \lambda x$. Set $x_n = \frac{x}{\|x\|}$, then $\|(A - \lambda I)x_n\| = 0$ so $\lambda \in \sigma_{app}(A)$.

c) Prove $\sigma_c(A) \subseteq \sigma_{app}(A)$ Assume $\lambda \in \sigma_c(A)$. Then $\overline{ran(A - \lambda I)} = H$. Set $\alpha = \inf_{\|x\|=1} \|(A - \lambda I)x\|$. We want to prove that $\alpha = 0$ (if it is then we can pick x_n s.t. $\|x_n\| = 1$ and $\|(A - \lambda I)x_n\| \to 0$). If $\alpha \neq 0$ then by Proposition 5.30 $ran(A - \lambda I)$ is closed. This is impossible since $(A - \lambda I)$ is not onto but $\overline{ran(A - \lambda I)} = H$.

d) Give an example of an operator A and a point $\lambda \in \sigma_r(A)$ s.t. $\lambda \notin \sigma_{app}(A)$. Consider the right-shift operator S from question 9.10 and the point $\lambda = 0$. Then if $||x_n|| = 1$ we have $||(S - \lambda I)x_n|| = ||Sx_n|| = ||x_n|| = 1$.