## Homework 5

9.1) Prove that $\rho\left(A^{*}\right)=\overline{\rho(A)}$ where $\overline{\rho(A)}$ is the set $\{\lambda \in C \mid \bar{\lambda} \in \rho(A)\}$.

Assume $\lambda \in \rho(A)$. Then $(A-\lambda I)^{-1}$ and $\left((A-\lambda I)^{-1}\right)^{*}$ exist and are bounded.
We need to show that $\left((A-\lambda I)^{-1}\right)^{*}=\left(A^{*}-\bar{\lambda} I\right)^{-1}$.
If we show that $\left(B^{-1}\right)^{*}=\left(B^{*}\right)^{-1}$ then this follows immediately.
Say $y=B y^{\prime}$. Then $\left\langle\left(B^{-1}\right)^{*} x, y\right\rangle=\left\langle x, B^{-1} y\right\rangle=\left\langle x, y^{\prime}\right\rangle$

$$
\left\langle\left(B^{*}\right)^{-1} x, y\right\rangle=\left\langle\left(B^{*}\right)^{-1} x, B y^{\prime}\right\rangle=\left\langle B^{*}\left(B^{*}\right)^{-1} x, y^{\prime}\right\rangle=\left\langle x, y^{\prime}\right\rangle
$$

So $\left(B^{-1}\right)^{*}=\left(B^{*}\right)^{-1}$ and we are done.
9.2) If $\lambda$ is an eigenvalue of $A$ then $\bar{\lambda}$ is in the spectrum of $A^{*}$. What can you say about the type of spectrum $\bar{\lambda}$ belongs to?

First we show that $\bar{\lambda}$ is in the spectrum of $A^{*}: \quad \lambda \in \sigma_{p}(A) \Rightarrow \exists x \neq 0$ s.t. $(A-\lambda I) x=0 \forall y$
This holds iff $\left(x,\left(A^{*}-\bar{\lambda} I\right) y\right)=0 \forall y$ which holds iff $x \perp \operatorname{ran}\left(A^{*}-\bar{\lambda} I\right) \Rightarrow \bar{\lambda} \in \sigma\left(A^{*}\right)$
Now $\bar{\lambda} \notin \sigma_{c}(A)$ because $\left(A^{*}-\bar{\lambda} I\right)$ is dense iff $\left(A^{*}-\bar{\lambda} I\right)^{\perp}=0$, but $x \neq 0$.
So $\bar{\lambda}$ is in either the point or residual spectrum of $A^{*}$.
9.3) Suppose that A is a bounded linear operator of a Hilbert space and $\lambda, \mu \in \rho(A)$. Prove that the resolvent $R_{\lambda}$ of A satisfies $R_{\lambda}-R_{\mu}=(\mu-\lambda) R_{\lambda} R_{\mu}$.

First note that $A^{-1}-B^{-1}=-A^{-1}(A-B) B^{-1}$ (we use this below in the equality denoted by *)
Then $R_{\lambda}-R_{\mu}=(A-\lambda I)^{-1}-(A-\mu I)^{-1} \stackrel{*}{=}-\underbrace{(A-\lambda I)^{-1}}_{=R_{\lambda}} \underbrace{((A-\lambda I)-(A-\mu I))}_{=(\mu-\lambda)} \underbrace{(A-\mu I)^{-1}}_{=R_{\mu}}=(\mu-\lambda) R_{\lambda} R_{\mu}$
9.4) Prove that the spectrum of an orthogonal projection P is either $\{0\}$ (in which case $\mathrm{P}=0$ ), $\{1\}$ (in which case $\mathrm{P}=\mathrm{I}$ ), or $\{0,1\}$.

Assume that P is an orthogonal projection. Then $H=\operatorname{ran} P \oplus \operatorname{ker} P$ where $\operatorname{ran} P=(\operatorname{ker} P)^{\perp}$.
Case 1) $\quad \operatorname{ran} P=\{0\}$
Then $P=0$ and $P x=0 \forall x$ so $0 \in \sigma_{p}(P)$
If $\lambda \neq 0$ then $(P-\lambda I)^{-1}=\frac{1}{\lambda} I$ so $\lambda \in \rho(P)$
Case 2) $\quad \operatorname{ker} P=\{0\}$
Then $\operatorname{ran} P=(\operatorname{ker} P)^{\perp}=H$ so $P=I$ and $P x=x \forall x$ so $1 \in \sigma_{p}(P)$
If $\lambda \neq 1$ then $(P-\lambda I)^{-1}=\frac{1}{1-\lambda} I$ so $\lambda \in \rho(P)$
Case 3) $\quad \operatorname{ran} P \neq\{0\}, \operatorname{ker} P \neq\{0\}$
If $x \neq 0, x \in \operatorname{ran} P$ then $x=P x$ so $1 \in \sigma_{p}(P)$
If $x \neq 0, x \in \operatorname{ker} P$ then $0=P x$ so $0 \in \sigma_{p}(P)$
If $\lambda \neq 0,1$ then $(P-\lambda I)^{-1}=\frac{1}{1-\lambda} P-\frac{1}{\lambda}(I-P)$ so $\lambda \in \rho(P)$
9.5) A is a bounded, nonnegative operator on a complex Hilbert space. Prove that $\sigma(A) \subset[0, \infty)$.

First note that A nonnegative implies A self-adjoint and A self-adjoint implies $\sigma(A) \in R$. Also, A bounded implies $\sigma(A) \subseteq[-\|A\|,\|A\|]$.
Assume $\lambda<0$. We need to show that $(A-\lambda I)$ is invertible.
Since A is self-adjoint we know that $(A u, u)=(u, A u) \in R$ so:
$\|(A-\lambda I) u\|^{2}=\underbrace{\|A u\|^{2}}_{\geq 0} \underbrace{-2 \lambda \underbrace{(A u, u)}_{<0}}_{\geq 0}+\lambda^{2}\|u\|^{2} \geq \lambda^{2}\|u\|^{2}$ so $(A-\lambda I)$ is coercive. A coercive implies
$\left\{\begin{array}{c}\operatorname{ran}(A-\lambda I) \text { closed } \Rightarrow \lambda \notin \sigma_{c}(A) \\ (A-\lambda I) \text { one }- \text { to }- \text { one } \Rightarrow \lambda \notin \sigma_{p}(A)\end{array}\right.$. A self-adjoint implies $\sigma_{r}(A)=\{$ empty $\}$.
Since $\lambda$ is not in any of the parts of the spectrum it is not in the spectrum and our proof is complete.
9.6) G is a multiplication operator on $L^{2}(R)$ defined by $G f(x)=g(x) f(x)$ where g is continuous and bounded. Prove that G is a bounded linear operator on $L^{2}(R)$ and that its spectrum is given by $\sigma(G)=\{g(x) \mid x \in R\}$. Can an operator of this form have eigenvalues?

## $G$ is a bounded linear operator:

$$
\|G\|=\sup _{\|f\| \|=1}\|G f\|=\sup _{\| f \mid=1}\left(\int \mid g(x) f(x)^{2} d x\right)^{1 / 2} \leq \underbrace{\sup \mid g(x)}_{=\|g\|_{u}} \underbrace{\sup _{\|f\|^{\prime}}\left(\int \mid f \|=1\right.}_{\|f\|=1}\left|\int f(x)\right|^{2} d x)^{1 / 2}=\|g\|_{u}
$$

Spectrum: Set $\Omega=\overline{\{g(x) \mid x \in R\}}$.
Suppose $\lambda \notin \Omega$. Then $\exists \varepsilon>0$ s.t. $|\lambda-g(x)| \geq \varepsilon \forall x$.
Note that

$$
(G-\lambda I) \frac{1}{g(x)-\lambda} f(x)=\frac{g(x)}{g(x)-\lambda} f(x)-\frac{\lambda}{g(x)-\lambda} f(x)=f(x) \Rightarrow(G-\lambda I)^{-1} f(x)=\frac{1}{g(x)-\lambda} f(x)
$$

Then

$$
\left\|(G-\lambda I)^{-1}\right\|=\sup _{\|f\| \mid=1}\left\|(G-\lambda I)^{-1} f\right\|=\sup _{\|f\|=1}\left(\int\left|\frac{1}{g(x)-\lambda} f(x)\right|^{2} d x\right)^{1 / 2} \leq \underbrace{\sup \left|\frac{1}{g(x)-\lambda}\right| \underbrace{}_{\|f\|=1} \sup _{\|}\left(\int|f(x)|^{2} d x\right)^{1 / 2}}_{\leq \varepsilon} \leq \varepsilon
$$

Suppose $\lambda \in \Omega$. Then there exists $x_{n} \in R$ s.t. $g\left(x_{n}\right) \rightarrow \lambda$
For $j=1,2,3 \ldots$ pick $n_{j}$ s.t. $\left|g\left(x_{n_{j}}\right)-\lambda\right| \leq \frac{1}{j}$
Since g is continuous at $x_{n_{j}}$ there exists $\delta$ s.t. $x \in B_{\delta}\left(x_{n_{j}}\right) \Rightarrow\left|g\left(x_{n_{j}}\right)-g(x)\right| \leq \frac{1}{j}$
Set $u_{n_{j}}(x)=\left\{\begin{array}{cc}\sqrt{j / 2} & x \in B_{\delta}\left(x_{n_{j}}\right) \\ 0 & \text { else }\end{array}\right.$

Then

$$
\left\|(G-\lambda I) u_{n_{j}}\right\|^{2}=\int|g(x)-\lambda|^{2}\left|u_{n_{j}}(x)\right|^{2} d x \leq \int(\underbrace{\mid g(x)-g\left(x_{n_{j}}\right)}_{\leq 1 / j}+\underbrace{\left|g\left(x_{n_{j}}\right)-\lambda\right|}_{\leq 1 / j})^{2}\left|u_{n_{j}}(x)\right|^{2} d x \leq
$$

$$
\leq \frac{4}{j^{2}} \underbrace{\int\left|u_{n_{j}}(x)\right|^{2} d x}_{=1}=\frac{4}{j^{2}} \xrightarrow{j \rightarrow \infty} 0
$$

The inequality denoted by "TI" uses the triangle inequality.
We have shown that $(G-\lambda I)$ is not continuously invertible (so $\lambda$ is in the spectrum).
Eigenvalues: Suppose $(G-\lambda I) u=0$ for $u \neq 0$.
Then $(g(x)-\lambda) u(x)=0$ but $u \neq 0$. This is possible if and only if the set $\{x: g(x)=\lambda\}$ has positive (non-zero) measure).
9.7) Let $K: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ be the integral operator defined by $K f(x)=\int_{0}^{x} f(y) d y$.
a) Find the adjiont operator $K^{*}$.
$(K f, g)=\int_{0}^{1} \int_{0}^{x} \overline{f(y)} d y g(x) d x=\int_{0}^{1} \int_{0}^{x} \overline{f(y)} g(x) d y d x=\int_{0}^{1} \int_{y}^{1} \overline{f(y)} g(x) d x d y=\int_{0}^{1} \overline{f(y)} \int_{y}^{1} g(x) d x d y=\left(f, K^{*} g\right)$
So $K^{*} g(x)=\int_{y}^{1} g(y) d y$
b) Show that $\|K\|=2 / \pi$.

Set $\phi_{n}(x)=\sqrt{2} \cos \left(\frac{n \pi x}{2}\right)$. Then $\left(\phi_{n}\right)_{n=1}^{\infty}$ is an ON-basis for $L^{2}([0,1])$.
Then $\left[K \phi_{n}\right](x)=\sqrt{2} \int_{0}^{x} \cos \left(\frac{n \pi x}{2}\right) d y=\left[\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]_{0}^{x}=\sqrt{2} \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)$.
Set $\psi_{n}(x)=\sqrt{2} \sin \left(\frac{n \pi x}{2}\right)$. Then $\left(\psi_{n}\right)_{n=1}^{\infty}$ is also an ON-basis for $L^{2}([0,1])$.
We can write $x=\sum_{n=1}^{\infty} \alpha_{n} \phi_{n}$.
Then $\|K x\|^{2}=\left\|\sum_{n=1}^{\infty} \alpha_{n} K \phi_{n}\right\|^{2}=\left\|\sum_{n=1}^{\infty} \alpha_{n} \frac{2}{n \pi} \psi_{n}\right\|^{2}=\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{\left(\frac{2}{n \pi}\right)^{2}} \leq \frac{4}{\pi^{2}} \sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2}=\frac{4}{\pi^{2}}\|x\|^{2}$ so $\|K\| \leq \frac{2}{\pi}$.
Since $\left\|K \phi_{1}\right\|^{2}=\frac{2}{\pi}\left\|\phi_{1}\right\|^{2}$ we also have that $\|K\| \geq \frac{2}{\pi}$. Together we get $\|K\|=2 / \pi$.
Remark: We have determined the singular value decomposition of K :
$K x=\sum_{n=1}^{\infty} \sigma_{n} \psi_{n}\left\langle\phi_{n}, x\right\rangle$ where $\sigma_{n}=\frac{2}{n \pi}$ are the singular values.
We can then conclude that $\|K\|=\max _{n} \sigma_{n}=\sigma_{1}=\frac{2}{\pi}$.
c) Show that the spectral radius of K is equal to zero.
$\left[K^{2} u\right](x)=\int_{0}^{x} \int_{0}^{y} u(z) d z d y=\int_{0}^{x} u(z) \int_{z}^{x} d y d z=\int_{0}^{x}(x-z) u(z) d z$
$\left[K^{3} u\right](x)=\int_{0}^{x} \int_{0}^{y}(y-z) u(z) d z d y=\int_{0}^{x} u(z) \int_{z}^{x}(y-z) d y d z=\int_{0}^{x(x-z)^{2}} \frac{2}{2} u(z) d z$
This generalizes to $\left[K^{n} u\right](x)=\cdots=\int_{0}^{x} \frac{(x-z)^{n-1}}{(n-1)!} u(z) d z$
So $\left\|K^{n} u\right\|^{2}=\int_{0}^{1}\left(\int_{0}^{x} \frac{(x-z)^{n-1}}{(n-1)!} u(z) d z\right)^{2} d x \leq \frac{1}{C S}(n-1)!\int_{0}^{1} \underbrace{\left(\int_{0}^{x}(x-z)^{2(n-1)} d z\right)^{2}}_{\leq 1} \underbrace{\left(\int_{0}^{x} u^{2}(y) d z\right)^{2}}_{\leq \mid u \|^{2}} d x \leq \frac{\|u\|^{2}}{(n-1)!}$
This implies that $\left\|K^{n}\right\|^{2} \leq \frac{1}{(n-1)!}$, so $r(K)=\limsup _{n \rightarrow \infty}\left(\frac{1}{(n-1)!}\right)^{1 / n}=0$
d) Show that 0 belongs to the continuous spectrum of K .

Set $K u=v$.
Pick $\widetilde{v} \in P$ s.t. $\|v-\widetilde{v}\|<\varepsilon$ where P is the set of functions $(\sin (n \pi x))_{n=1}^{\infty}$. We have previously shown that this is a basis.
Set $\tilde{u}=\widetilde{v}^{\prime}$ then $\tilde{u} \in L^{2}(I)$ and $[K \widetilde{u}](x)=\int_{0}^{x} \widetilde{v}(y) d y=\widetilde{v}(x)-\widetilde{v}(0)=\widetilde{v}(x)$
The final equality uses the fact that $\sin (0)=0$.
So $\widetilde{v}(x) \in \operatorname{ran} K$ and $\|v-\widetilde{v}\|<\varepsilon$, hence 0 is in the continuous spectrum.
9.8) Define the right shift operator S on $l^{2}(Z)$ by $S(x)_{k}=x_{k-1} \forall k \in Z$ where $x=\left(x_{k}\right)_{k=-\infty}^{\infty}$ is in $l^{2}(Z)$. Prove the following (a-d).
First recall the Fourier transform: $F^{-1} x=\sum_{n=-\infty}^{\infty} x_{n} \frac{e^{i t n}}{\sqrt{2 \pi}}$
Set $\widetilde{S}=F^{-1} S F$, then $(\widetilde{S}-\lambda I)=F^{-1} S F-\lambda F^{-1} F=F^{-1}(S-\lambda I) F$
Now $\lambda \in \sigma_{\alpha}(S) \Leftrightarrow \lambda \in \sigma_{\alpha}(\widetilde{S}), \quad \alpha=p, c, r$
Then $F^{-1} S x=\sum_{n=-\infty}^{\infty} x_{n-1} \frac{e^{i t n}}{\sqrt{2 \pi}}=e^{i t} \sum_{n=-\infty}^{\infty} x_{n-1} \frac{e^{i t(n-1)}}{\sqrt{2 \pi}}=e^{i t} \underbrace{\widetilde{x}}_{=F^{-1} x}(t)$ so $[\widetilde{S} \widetilde{x}](t)=e^{i t} \widetilde{x}(t)$
Assume $|\lambda| \neq 1$. Given $\tilde{y} \in L^{2}(T)$ we have $(S-\lambda I) \frac{1}{e^{i t}-\lambda} \tilde{y}(t)=\tilde{y}(t)$ so $(S-\lambda I)$ is bijective.
$(S-\lambda I)$ bijective implies $\lambda \in \rho(\widetilde{S})$
Assume $|\lambda|=1$ and $(\widetilde{S}-\lambda I) \widetilde{x}=0$. Then $\left(e^{i t}-\lambda I\right) \widetilde{x}(t)=0$ almost everywhere which implies $\tilde{x}=0$.
This means that $(\widetilde{S}-\lambda I)$ is one-to-one, so we can immediately conclude that $\left.\lambda \notin \sigma_{p}(\widetilde{S}) .{ }^{(* *}\right)$
Note that $1 \notin \operatorname{ran}(\tilde{S}-\lambda I) \Rightarrow \operatorname{ran}(\tilde{S}-\lambda I) \neq L^{2}(T) \quad\left({ }^{* * *}\right)$
However, given a $\tilde{y} \in L^{2}(T)$ set $\tilde{y}_{m}(t)=\left\{\begin{array}{cc}\tilde{y}(t) & \left|\lambda-e^{i t}\right| \geq 1 / n \\ 0 & \text { else }\end{array}\right.$ then $\tilde{y}_{m}(t) \xrightarrow{{ }_{m \rightarrow \infty}} y(t)$ and $\widetilde{y}_{m} \in \operatorname{ran}(\widetilde{S}-\lambda I)$ since $(\widetilde{S}-\lambda I) \frac{\widetilde{y}_{m}(t)}{e^{i t}-\lambda}=\tilde{y}_{m}(t)$
a) The point spectrum of S is empty.

The equations $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ above show that $\lambda$ isn't in the point spectrum for $|\lambda| \neq 1$ and $|\lambda|=1$ respectively. Combined they show that the point spectrum is empty.
b) $\quad \operatorname{ran}(\lambda I-S)=l^{2}(Z)$ for every $\lambda \in C$ with $|\lambda|>1$

Equation (*) above shows this.
c) $\quad \operatorname{ran}(\lambda I-S)=l^{2}(Z)$ for every $\lambda \in C$ with $|\lambda|<1$

Equation (*) above shows this.
d) The spectrum of $S$ consists of the unit circle $\{\lambda \in C||\lambda|=1\}$ and is purely continuous.

Equation $\left(^{*}\right)$ shows that $\lambda$ is not in the spectrum for $|\lambda| \neq 1$. Equations $\left({ }^{* * *)}\right.$ and $\left({ }^{* * * *)}\right.$ combine to show that all $\lambda$ with $|\lambda|=1$ are in the continuous spectrum.
9.9) Define the discrete Laplacian operator $\Delta$ on $l^{2}(Z)$ by $(\Delta x)_{k}=x_{k-1}-2 x_{k}+x_{k+1}$, where $x=\left(x_{k}\right)_{k=-\infty}^{\infty}$. Show that $\Delta=S+S^{*}-2 I$ and prove that the spectrum of $\Delta$ is entirely continuous and consists of the interval $[-4,0]$.

Noting that on $l^{2}(Z)$ the adjoint of the right shift operator is the left shift operator (see problem 3 of homework 3), the fact that $\Delta=S+S^{*}-2 I$ follows directly.

Spectrum: As we did in the previous problem we begin by switching to the Fourier domain.
Then
$F^{-1} \Delta x=\sum_{n=-\infty}^{\infty}\left(x_{n-1}+x_{n+1}+2 x_{n}\right) \frac{e^{i t n}}{\sqrt{2 \pi}}=e^{i t} \sum_{n=-\infty}^{\infty} x_{n-1} \frac{e^{i t(n-1)}}{\sqrt{2 \pi}}+e^{-i t} \sum_{n=-\infty}^{\infty} x_{n+1} \frac{e^{i t(n+1)}}{\sqrt{2 \pi}}+2 \sum_{n=-\infty}^{\infty} x_{n} \frac{e^{i t n}}{\sqrt{2 \pi}}=\left(e^{i t}+e^{-i t}+2\right) \underbrace{x}_{=f^{-1} x}(t)$
so $[\widetilde{\Delta} \widetilde{x}](t)=\left(e^{i t}+e^{-i t}+2\right) \widetilde{x}(t)$
Note that $e^{i t}+e^{-i t}+2 \leq \sup \left|e^{i t}\right|+\sup \left|e^{-i t}\right|+2 \leq 4$
Assume $|\lambda|>4$. Given $\tilde{y} \in L^{2}(T)$ we have $(\Delta-\lambda I) \frac{1}{\left(e^{i t}+e^{-i t}+2\right)-\lambda} \tilde{y}(t)=\tilde{y}(t)$ so $(\Delta-\lambda I)$ is bijective.
Note that $e^{i t}+e^{-i t}+2 \geq-\sup \left|e^{i t}\right|-\sup \left|e^{-i t}\right|+2 \geq 0$
Assume $|\lambda|<4$. Given $\tilde{y} \in L^{2}(T)$ we have $(\Delta-\lambda I)_{\frac{1}{\left(e^{i t}+e^{-i t}+2\right)-\lambda}} \tilde{y}(t)=\tilde{y}(t)$ so $(\Delta-\lambda I)$ is bijective.
So the spectrum consists of the interval $[-4,0]$. We just need to show that it is continuous.
Continuous: Note that $1 \notin \operatorname{ran}(\widetilde{\Delta}-\lambda I) \Rightarrow \operatorname{ran}(\widetilde{\Delta}-\lambda I) \neq L^{2}(T)$
However, given a $\tilde{y} \in L^{2}(T)$ set $\tilde{y}_{m}(t)=\left\{\begin{array}{cc}\tilde{y}(t) & \mid \lambda-\left(e^{i t}+e^{-i t}+2\right) \geq 1 / n \\ 0 & \text { else }\end{array}\right.$ then $\tilde{y}_{m}(t) \xrightarrow{m \rightarrow \infty} y(t)$ and $\widetilde{y}_{m} \in \operatorname{ran}(\widetilde{\Delta}-\lambda I)$ since $(\widetilde{\Delta}-\lambda I) \frac{\tilde{y}_{m}(t)}{\left(e^{i t}+e^{-i t}+2\right)-\lambda}=\widetilde{y}_{m}(t)$
9.10) Posted separately on the website.
9.11) The approximate spectrum is defined $\sigma_{\text {app }}(A)=\left\{\lambda: \exists\left(x_{n}\right)\right.$ s.t. $\left\|x_{n}\right\|=1$ and $\left.\left\|(A-\lambda I) x_{n}\right\| \rightarrow 0\right\}$.

Prove the following: (a) $\quad \sigma_{\text {app }}(A) \subseteq \sigma(A)$
(b) $\sigma_{p}(A) \subseteq \sigma_{a p p}(A)$
(c) $\quad \sigma_{c}(A) \subseteq \sigma_{\text {app }}(A)$
(d) Give an example to show that a point in the residual spectrum need not belong to the approximate spectrum.
a) Prove $\sigma_{\text {app }}(A) \subseteq \sigma(A)$

Assume $\lambda \in \sigma(A)^{c}=\rho(A)$. Then $(A-\lambda I)^{-1}$ is a bounded operator. If $\left(x_{n}\right)$ is any sequence of vectors with $\left\|x_{n}\right\|=1$ then set $y_{n}=(A-\lambda I) x_{n}$.
Then $1=\left\|x_{n}\right\|=\left\|(A-\lambda I)^{-1} y_{n}\right\| \leq\left\|(A-\lambda I)^{-1}\right\| \cdot\left\|y_{n}\right\|$.
Also $\left\|y_{n}\right\|=\left\|(A-\lambda I) x_{n}\right\| \geq \frac{1}{\left\|(A-\lambda I)^{-1}\right\|}$ so $\lambda \notin \sigma_{a p p}(A)$.
b) Prove $\sigma_{p}(A) \subseteq \sigma_{a p p}(A)$

Assume $\lambda \in \sigma_{p}(A)$. Then there exists an $x \neq 0$ s.t. $A x=\lambda x$. Set $x_{n}=\frac{x}{\|x\|}$, then $\left\|(A-\lambda I) x_{n}\right\|=0$ so $\lambda \in \sigma_{\text {app }}(A)$.
c) Prove $\sigma_{c}(A) \subseteq \sigma_{a p p}(A)$

Assume $\lambda \in \sigma_{c}(A)$. Then $\overline{\operatorname{ran}(A-\lambda I)}=H$. Set $\alpha=\inf _{\|x\|=1}\|(A-\lambda I) x\|$. We want to prove that $\alpha=0$ (if it is then we can pick $x_{n}$ s.t. $\left\|x_{n}\right\|=1$ and $\left\|(A-\lambda I) x_{n}\right\| \rightarrow 0$ ).
If $\alpha \neq 0$ then by Proposition $5.30 \operatorname{ran}(A-\lambda I)$ is closed. This is impossible since $(A-\lambda I)$ is not onto but $\overline{\operatorname{ran}(A-\lambda I)}=H$.
d) Give an example of an operator A and a point $\lambda \in \sigma_{r}(A)$ s.t. $\lambda \notin \sigma_{\text {app }}(A)$. Consider the right-shift operator $S$ from question 9.10 and the point $\lambda=0$. Then if $\left\|x_{n}\right\|=1$ we have $\left\|(S-\lambda I) x_{n}\right\|=\left\|S x_{n}\right\|=\left\|x_{n}\right\|=1$.

