
Homework 5 
 

9.1) Prove that ( ) ( )AA ρρ =∗  where ( )Aρ  is the set ( ){ }AC ρλλ ∈∈ | . 

 

Assume ( )Aρλ∈ .  Then ( ) 1−− IA λ  and ( )( )∗−− 1
IA λ  exist and are bounded. 

We need to show that ( )( ) ( ) 11 −∗∗− −=− IAIA λλ .   

If we show that ( ) ( ) 11 −∗∗− = BB  then this follows immediately. 

Say yBy ′= .  Then 
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So ( ) ( ) 11 −∗∗− = BB  and we are done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.2) Ifλ is an eigenvalue of A thenλ is in the spectrum of ∗A .  What can you say about the type 

of spectrum λ belongs to? 

 

First we show that λ is in the spectrum of ∗A : ( ) ( ) yxIAtsxAp ∀=−≠∃⇒∈ 0..0 λσλ  

This holds iff  ( )( ) yyIAx ∀=−∗ 0, λ  which holds iff ( ) ( )∗∗ ∈⇒−⊥ AIAranx σλλ  

Now ( )Acσλ∉  because ( )IA λ−∗  is dense iff ( ) 0=−
⊥∗ IA λ , but 0≠x . 

So λ is in either the point or residual spectrum of ∗A . 

 

 

 

 

 

 

 

 

 



9.3) Suppose that A is a bounded linear operator of a Hilbert space and ( )Aρµλ ∈, .  Prove 

that the resolvent λR of A satisfies ( ) µλµλ λµ RRRR −=− . 

 

First note that ( ) 1111 −−−− −−=− BBAABA  (we use this below in the equality denoted by *) 

Then ( ) ( ) ( ) ( ) ( )( )
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9.4) Prove that the spectrum of an orthogonal projection P is either { }0  (in which case P=0), 

{ }1  (in which case P=I), or { }1,0 . 

 

Assume that P is an orthogonal projection.  Then PranPH ker⊕=  where ( )⊥= PranP ker .   

Case 1) { }0=ranP  

Then 0=P  and xPx ∀= 0  so ( )Ppσ∈0  

If 0≠λ  then ( ) IIP
λ

λ
11 =− −

 so ( )Pρλ∈  

 

Case 2) { }0ker =P  

Then ( ) HPranP == ⊥
ker  so IP =  and xxPx ∀=  so ( )Ppσ∈1  

If 1≠λ  then ( ) IIP
λ

λ
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Case 3) { } { }0ker,0 ≠≠ PranP  

If ranPxx ∈≠ ,0  then Pxx = so ( )Ppσ∈1  

If Pxx ker,0 ∈≠  then Px=0 so ( )Ppσ∈0  

If 1,0≠λ  then ( ) ( )PIPIP −−
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9.5) A is a bounded, nonnegative operator on a complex Hilbert space.  Prove that 

( ) [ )∞⊂ ,0Aσ . 

 

First note that A nonnegative implies A self-adjoint and A self-adjoint implies ( ) RA ∈σ .  Also, 

A bounded implies ( ) [ ]AAA ,−⊆σ . 

Assume 0<λ .  We need to show that ( )IA λ−  is invertible. 

Since A is self-adjoint we know that ( ) ( ) RAuuuAu ∈= ,,  so: 

( ) {( ) 2222

0

0
0

0

22
,2 uuuAuAuuIA λλλλ ≥+−=−

≥

≥<
≥ 43421

321321
 so ( )IA λ−  is coercive.  A coercive implies 
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.  A self-adjoint implies ( ) { }emptyAr =σ . 

Since λ  is not in any of the parts of the spectrum it is not in the spectrum and our proof is 

complete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.6) G is a multiplication operator on ( )RL2  defined by ( ) ( ) ( )xfxgxGf =  where g is 

continuous and bounded.  Prove that G is a bounded linear operator on ( )RL2  and that its 

spectrum is given by ( ) ( ){ }RxxgG ∈= |σ .  Can an operator of this form have 

eigenvalues? 

 

G is a bounded linear operator: 
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Spectrum:  Set ( ){ }Rxxg ∈=Ω | .   

Suppose Ω∉λ .  Then 0>∃ε s.t. ( ) xxg ∀≥− ελ . 

Note that 
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Then 
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Suppose Ω∈λ .  Then there exists Rxn ∈  s.t. ( ) λ→nxg  

For ...3,2,1=j  pick jn  s.t. ( )
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The inequality denoted by “TI” uses the triangle inequality. 

We have shown that ( )IG λ−  is not continuously invertible (so λ  is in the spectrum). 

 

Eigenvalues: Suppose ( ) 0=− uIG λ  for 0≠u . 

Then ( )( ) ( ) 0=− xuxg λ  but 0≠u .  This is possible if and only if the set ( ){ }λ=xgx :  has 

positive (non-zero) measure). 



9.7) Let [ ]( ) [ ]( )1,01,0: 22 LLK →  be the integral operator defined by ( ) ( )∫=
x

dyyfxKf
0

. 

a) Find the adjiont operator ∗K . 
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b) Show that π2=K . 

Set ( ) 
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c) Show that the spectral radius of K is equal to zero. 
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This generalizes to [ ]( ) ( )
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d) Show that 0 belongs to the continuous spectrum of K. 

 

Set vKu = . 

Pick Pv ∈~  s.t. ε<− vv ~  where P is the set of functions ( )( )∞=1sin nxnπ .  We have previously 

shown that this is a basis. 

Set vu ′= ~~  then ( )ILu 2~∈  and [ ]( ) ( ) ( ) ( ) ( )xvvxvdyyvxuK
x ~0~~~~
0

=−== ∫  

The final equality uses the fact that ( ) 00sin = . 

So ( ) ranKxv ∈~  and ε<− vv ~ , hence 0 is in the continuous spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.8) Define the right shift operator S on ( )Zl 2  by ( ) ZkxxS kk ∈∀= −1  where ( )∞ −∞==
kkxx  is in 

( )Zl 2 .  Prove the following (a-d). 

First recall the Fourier transform:  ∑
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=− xIS λ .  Then ( ) ( ) 0~ =− txIeit λ  almost everywhere which implies 
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a) The point spectrum of S is empty. 

 

The equations (*) and (**) above show that λ  isn’t in the point spectrum for 1≠λ  and 1=λ  

respectively.  Combined they show that the point spectrum is empty. 

 

b) ( ) ( )ZlSIran 2=−λ  for every C∈λ  with 1>λ  

 

Equation (*) above shows this. 

 

c)  ( ) ( )ZlSIran 2=−λ  for every C∈λ  with 1<λ  

 

Equation (*) above shows this. 

 

d) The spectrum of S consists of the unit circle { }1| =∈ λλ C  and is purely continuous. 

 

Equation (*) shows that λ  is not in the spectrum for 1≠λ .  Equations (***) and (****) 

combine to show that all λ  with 1=λ  are in the continuous spectrum. 

 



9.9) Define the discrete Laplacian operator ∆  on ( )Zl 2  by ( ) 11 2 +− +−=∆ kkkk xxxx , where 

( )∞ −∞==
kkxx .  Show that ISS 2−+=∆ ∗  and prove that the spectrum of ∆  is entirely 

continuous and consists of the interval [ ]0,4− . 

 

Noting that on ( )Zl 2  the adjoint of the right shift operator is the left shift operator (see problem 3 

of homework 3), the fact that ISS 2−+=∆ ∗  follows directly. 

 

Spectrum: As we did in the previous problem we begin by switching to the Fourier domain. 

Then 
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So the spectrum consists of the interval [ ]0,4− .  We just need to show that it is continuous. 

 

Continuous: Note that ( ) ( ) ( )TLIranIran 2~~
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9.10) Posted separately on the website. 

 

 

 

 

 

 



9.11) The approximate spectrum is defined ( ) ( ) ( ){ }01..: →−=∃= nnnapp xIAandxtsxA λλσ .  

Prove the following: (a) ( ) ( )AAapp σσ ⊆   

   (b) ( ) ( )AA appp σσ ⊆  

   (c) ( ) ( )AA appc σσ ⊆  

(d) Give an example to show that a point in the residual spectrum need not belong to the 

approximate spectrum. 

 

a) Prove ( ) ( )AAapp σσ ⊆  

Assume ( ) ( )AA
c ρσλ =∈ .  Then ( ) 1−− IA λ  is a bounded operator.  If ( )nx  is any sequence of 

vectors with 1=nx  then set ( ) nn xIAy λ−= .   

Then ( ) ( ) nnn yIAyIAx ⋅−≤−== −− 11
1 λλ . 

Also ( )
( ) 1

1
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≥−=
IA

xIAy nn

λ
λ  so ( )Aappσλ∉ . 

 

b) Prove ( ) ( )AA appp σσ ⊆  

Assume ( )Apσλ ∈ .  Then there exists an 0≠x  s.t. xAx λ= .  Set 
x

x
xn = , then ( ) 0=− nxIA λ  

so ( )Aappσλ∈ . 

 

c) Prove ( ) ( )AA appc σσ ⊆  

Assume ( )Acσλ∈ .  Then ( ) HIAran =−λ .  Set ( )xIA
x

λα −=
=1

inf .  We want to prove that 

0=α  (if it is then we can pick nx  s.t. ( ) 01 →−= nn xIAandx λ ). 

If 0≠α  then by Proposition 5.30 ( )IAran λ−  is closed.  This is impossible since ( )IA λ−  is not 

onto but ( ) HIAran =−λ . 

 

d) Give an example of an operator A and a point ( )Arσλ∈  s.t. ( )Aappσλ∉ . 

Consider the right-shift operator S from question 9.10 and the point 0=λ .  Then if 1=nx  we 

have ( ) 1===− nnn xSxxIS λ . 


