
Homework set 7 — APPM5450, Spring 2011 — partial solutions

Problem 9.21: Suppose A ∈ B(H) is such that

Re(x, Ax) ≤ 2α||x||2.
Prove that the solution x = x(t) of x′(t) = Ax(t) satisfies

||x(t)|| ≤ eαt ||x(0)||.

Note: The book may have a typo — the bound seems off by a factor of two. Consider for instance
Ax = 2αx, then x(t) = e2αtx(0).

Solution: Set f(t) = ||x(t)||2. Then

f ′(t) =
d

dt
(x, x) = (x′, x) + (x, x′) = (Ax, x) + (x, Ax) = 2Re(x, Ax) ≤ 4α||x(t)||2 = 4αf(t).

By the Grönwall inequality, we find

||x(t)||2 = f(t) ≤ f(0) exp(

∫ t

0
4αds) = f(0) e4αt = ||x(0)||2 e4αt.

Extract the square root to obtain the desired bound.

Problem 9.22: Let A be compact and non-negative. Prove that there exists a unique compact
non-negative operator B such that B2 = A.

Solution: Since A is self-adjoint and compact, there is an ON-basis (φn)
∞
n=1 of eigen-vectors of A.

Aφn = λn φn. We know |λn| → 0 since A is compact, and λn ≥ 0 since A is non-negative.

Existence: Set B =
∑∞

n=1

√
λn Pn where Pnx = (φn, x), φn. It is easily shown that B2 = A and

that B is compact and non-negative.

Observe that from the construction of B, it follows that if ψ is a vector such that Aψ = λψ, then
B ψ =

√
λψ.

Uniqueness: Suppose that C is a non-negative compact operator such that C2 = A. We need to
show that C = B, where B is the operator constructed above. Since C is compact and self-adjoint,
there is an ON-basis (ψn)

∞
n=1 such that C ψn = µn ψn. Now observe that

Aψn = C2 ψn = C (µn ψn) = µ2nψn

so ψn is an eigenvector of A with eigenvalue µ2n. It follows that B ψn =
√
µ2n ψn = µn ψn = C ψn.

(We know that
√
µ2n = µn since C must be non-negative, which implies that µn ≥ 0.)
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Problem 1: Consider the Hilbert space H = Cn. Let A ∈ B(H), let (e(j))nj=1 be the canonical
basis, and let A have the representation

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


in the canonical basis. We define the Hilbert-Schmidt norm of A as

||A||HS =

 n∑
i,j=1

|aij |2
1/2

.

(a) Let (φ(j))nj=1 be any ON-basis for H. Show that ||A||2HS =

n∑
j=1

||Aφ(j)||2.

(b) Show that ||A|| ≤ ||A||HS ≤
√
n||A|| for any A ∈ B(H).

(c) Find G,H ∈ B(H) such that ||G||HS = ||G|| and ||H||HS =
√
n||H||.

Solution:

(a) Let r(i) denote the i’th row of A. Then
n∑

j=1

||Aφ(j)||2 =
n∑

j=1

n∑
i=1

||(r(i), ϕ(j))||2 = {Parseval} =

n∑
i=1

||r(i)||2 = ||A||2HS.

(b) For any x a simply application of Cauchy-Schwartz yields

||Ax||2 =
n∑

i=1

||(r(i), x)||2 ≤
n∑

i=1

||r(i)||2 ||x||2 = ||A||2HS||x||2.

It follows that ||A|| ≤ ||A||HS. Next, let i be such that ||r(i)|| = maxj ||r(j)||. Then

||A||2HS =

n∑
j=1

||r(j)||2 ≤ n ||r(i)||2 = n ||A∗ ei||2 ≤ n ||A∗|| = n ||A||,

where ei denotes the i’th canonical basis vector.

(c) For instance, let G be the matrix consisting of all ones, and let H be the identity matrix.
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Problem 2: Let H be a separable Hilbert space, and let A ∈ B(H). Suppose that H has an

ON-basis (φ(j))∞j=1 such that
∞∑
j=1

||Aφ(j)||2 <∞.

Prove that if (ψ(j))∞j=1 is any other ON-basis, then

∞∑
j=1

||Aφ(j)||2 =
∞∑
j=1

||Aψ(j)||2.

Solution: Set
αji = (Aφ(j), ψ(i)) = (φ(j), A∗ ψ(i))

and
βik = (A∗ ψ(i), ψ(k)) = (ψ(i), Aψ(k)).

The proof consists of four applications of Parseval:
∞∑
j=1

||Aφ(j)||2 =
∞∑
j=1

∞∑
i=1

|αji|2 =
∞∑
i=1

||A∗ ψ(i)||2 =
∞∑
i=1

∞∑
k=1

|βik|2 =
∞∑
k=1

||Aψ(k)||2.

Note that the interchanges of summation order are permissible as all terms are non-negative.
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Problem 3: Consider the linear space L = R2. Define for x = (x1, x2) ∈ L the seminorms

p1(x) = |x1|, p2(x) = |x2|.
Construct for x ∈ L, j ∈ {1, 2}, and ε ∈ (0,∞), the sets

Bx,j,ε = {y ∈ L : pjj(x− y) < ε}.
Describe these sets geometrically. What is the topology generated by the collection of semi-norms
{p1}? Is it Hausdorff? What is the topology generated by the collection of semi-norms {p1, p2}?
Is it Hausdorff?

Solution:

For x = (x1, x2), the set Bx,1,ε is a vertical strip of width 2ε centered around x1. The set Bx,2,ε is
a horizontal strip of width 2ε centered around x2.

The topology T1 generated by {p1} is the topology on the real line. In other words, Ω ∈ T1
iff Ω = Ω1 × R where Ω1 is an open set on the line. This topology is not Hausdorff. For a
counter-example, set x = (0, 0) and y = (0, 1). Then if Ω ∈ T1 we have

x ∈ Ω ⇔ y ∈ Ω.

As far as T1 is concerned, the points x and y are not distinct.

The topology generated by {p1, p2} has as its base B intersections of open sets in T1 and T2. This
means that B consists of all open rectangles in the plane. These generate the standard topology
on R2, which is Hausdorff.


