Homework set 8 - APPM5450, Spring 2011 - Hints

11.5: Note that

$$
\frac{1}{x+i \varepsilon}=\frac{x}{\varepsilon^{2}+x^{2}}-i \frac{\varepsilon}{\varepsilon^{2}+x^{2}}
$$

Fix a $\varphi \in \mathcal{S}$. You need to prove that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\langle i \frac{\varepsilon}{\varepsilon^{2}+x^{2}}, \varphi\right\rangle \rightarrow-i \pi \varphi(0) . \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\langle\frac{x}{\varepsilon^{2}+x^{2}}, \varphi\right\rangle \rightarrow\left\langle\mathrm{PV}\left(\frac{1}{x}\right), \varphi\right\rangle \tag{2}
\end{equation*}
$$

Proving (1) is simple:

$$
\left\langle i \frac{\varepsilon}{\varepsilon^{2}+x^{2}}, \varphi\right\rangle=\int_{-\infty}^{\infty} i \frac{\varepsilon}{\varepsilon^{2}+x^{2}} \varphi(x) d x=\{\operatorname{Set} x=\varepsilon y\}=\cdots
$$

For (2) we need to work a bit more (unless I overlook a simpler solution)

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0}\left\langle\frac{x}{\varepsilon^{2}+x^{2}}, \varphi\right\rangle-\left\langle\mathrm{PV}\left(\frac{1}{x}\right), \varphi\right\rangle \\
&= \lim _{\varepsilon \rightarrow 0} \int_{-\infty}^{\infty} \frac{x}{\varepsilon^{2}+x^{2}} \varphi(x) d x-\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \sqrt{\varepsilon}} \frac{1}{x} \varphi(x) d x \\
&=\underbrace{\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \sqrt{\varepsilon}}\left(\frac{x}{\varepsilon^{2}+x^{2}}-\frac{1}{x}\right) \varphi(x) d x}_{=S_{1}}+\underbrace{\lim _{\varepsilon \rightarrow 0} \int_{|x| \leq \sqrt{\varepsilon}} \frac{x}{\varepsilon^{2}+x^{2}} \varphi(x) d x}_{=S_{2}} .
\end{aligned}
$$

First we bound $\left|S_{1}\right|$. Note that when $|x| \geq \sqrt{\varepsilon}$, we have

$$
\left|\frac{x}{\varepsilon^{2}+x^{2}}-\frac{1}{x}\right|=\frac{\varepsilon^{2}}{|x|\left(\varepsilon^{2}+x^{2}\right)} \leq \frac{\varepsilon^{2}}{|x|^{3}} \leq \frac{\varepsilon^{2}}{\varepsilon^{3 / 2}}=\sqrt{\varepsilon} .
$$

Consequently,

$$
\begin{aligned}
&\left|S_{1}\right| \leq \limsup _{\varepsilon \rightarrow 0} \int_{|x| \geq \sqrt{\varepsilon}}\left|\frac{x}{\varepsilon^{2}+x^{2}}-\frac{1}{x}\right||\varphi(x)| d x \\
& \leq \limsup _{\varepsilon \rightarrow 0} \int_{|x| \geq \sqrt{\varepsilon}} \sqrt{\varepsilon} \frac{1}{\left(1+|x|^{2}\right)} \underbrace{\left|\left(1+|x|^{2}\right) \varphi(x)\right|}_{\leq\|\varphi\|_{0,2}} d x=0 .
\end{aligned}
$$

In bounding S_{2} we use that

$$
\int_{|x| \leq \sqrt{\varepsilon}} \frac{x}{\varepsilon^{2}+x^{2}} \varphi(0) d x=0
$$

and that

$$
|\varphi(x)-\varphi(0)| \leq|x|\left\|\varphi^{\prime}\right\|_{\mathrm{u}} \leq|x|\|\varphi\|_{1,0},
$$

to obtain

$$
\begin{aligned}
\left|S_{2}\right|=\left|\lim _{\varepsilon \rightarrow 0} \int_{|x| \leq \sqrt{\varepsilon}} \frac{x}{\varepsilon^{2}+x^{2}}(\varphi(x)-\varphi(0)) d x\right| \\
\quad \leq \limsup _{\varepsilon \rightarrow 0} \int_{|x| \leq \sqrt{\varepsilon}} \underbrace{\frac{|x|}{\varepsilon^{2}+x^{2}}|x|}_{\leq 1}\|\varphi\|_{1,0} d x=0 .
\end{aligned}
$$

Problem 11.6: We find that

$$
\begin{aligned}
\langle D(\log |x|) \varphi\rangle=-\langle\log | x\left|\varphi^{\prime}\right\rangle=-\int_{\mathbb{R}} & \log |x| \varphi^{\prime}(x) d x \\
& =-\lim _{\varepsilon \rightarrow 0}\left[\int_{-\infty}^{-\varepsilon} \log (-x) \varphi^{\prime}(x) d x+\int_{\varepsilon}^{\infty} \log (x) \varphi^{\prime}(x) d x\right] .
\end{aligned}
$$

Now simply perform partial integration in each term separately.
Problem 11.7: First prove that $x \cdot \delta(x)=0$ and that $x \cdot \mathrm{PV}(1 / x)=1$ (using the regular rules for the product between a polynomial and a Schwartz function). Suppose that • is distributive and can pair any two distributions. Then on the one hand we would have

$$
\delta(x) \cdot x \cdot \operatorname{PV}(1 / x)=\delta(x) \cdot(x \cdot \operatorname{PV}(1 / x))=\delta(x) \cdot 1=\delta(x)
$$

But we would also have

$$
\delta(x) \cdot x \cdot \operatorname{PV}(1 / x)=(x \cdot \delta(x)) \cdot \mathrm{PV}(1 / x)=0 \cdot \mathrm{PV}(1 / x)=0
$$

This is a contradiction.
Problem 11.8: Fix $\varphi \in \mathcal{S}$. Set $\alpha=\int \varphi$, and define

$$
\begin{equation*}
\psi(x)=\int_{-\infty}^{x}(\varphi(z)-\alpha \omega(z)) d z \tag{3}
\end{equation*}
$$

Obviously, $\psi \in C^{\infty}$, and

$$
\begin{equation*}
\varphi(x)=\alpha \omega(x)+\psi^{\prime}(x) \tag{4}
\end{equation*}
$$

Moreover, we find that if $n \geq 1$, then

$$
\begin{aligned}
\|\psi\|_{n, k}=\left\|\left(1+|x|^{2}\right)^{k / 2} \psi^{(n)}\right\|_{\mathrm{u}} & \\
& =\left\|\left(1+|x|^{2}\right)^{k / 2}\left(\varphi^{(n-1)}-\alpha \omega^{(n-1)}\right)\right\|_{\mathrm{u}} \leq\|\varphi\|_{n-1, k}+|\alpha|\|\omega\|_{n-1, k} .
\end{aligned}
$$

It remains to prove that for any k,

$$
\sup _{x}\left(1+|x|^{2}\right)^{k / 2}|\psi(x)|<\infty .
$$

First consider $x \leq 0$. Then for any k, we have

$$
\begin{aligned}
& \sup _{x \leq 0}\left(1+|x|^{2}\right)^{k / 2}|\psi(x)| \\
& \qquad \begin{array}{l}
\leq \limsup _{x \leq 0}\left[\left(1+|x|^{2}\right)^{k / 2} \int_{-\infty}^{x} \frac{1}{\left(1+|y|^{(k+2) / 2}\right)}\|\varphi\|_{0, k+2} d y\right. \\
\\
\left.+|\alpha|\left(1+|x|^{2}\right)^{k / 2} \int_{-\infty}^{x} \frac{1}{\left(1+|y|^{(k+2) / 2}\right)}\|\omega\|_{0, k+2} d y\right]<\infty .
\end{array}
\end{aligned}
$$

To prove the corresponding estimate for $x \geq 0$, we use that since

$$
\underbrace{\int_{-\infty}^{x}(\varphi(z)-\alpha \omega(z)) d z}_{=\psi(x)}+\int_{x}^{\infty}(\varphi(z)-\alpha \omega(z)) d z=0
$$

we can also express ψ as

$$
\psi(x)=-\int_{x}^{\infty}(\varphi(z)-\alpha \omega(z)) d z
$$

Then proceed as in the bound for $x \leq 0$.

Problem 1:

$$
\begin{aligned}
\langle D f, \varphi\rangle=-\left\langle f, \varphi^{\prime}\right\rangle=-\int_{-\infty}^{0} & (-x) \varphi^{\prime}(x) d x-\int_{0}^{\infty} x \varphi^{\prime}(x) d x \\
& =\underbrace{[x \varphi(x)]_{-\infty}^{0}}_{=0}-\int_{-\infty}^{0} \varphi(x) d x-\underbrace{[x \varphi(x)]_{0}^{\infty}}_{=0}+\int_{-\infty}^{0} \varphi(x) d x=\langle g, \varphi\rangle,
\end{aligned}
$$

where

$$
g(x)= \begin{cases}-1 & x \leq 0 \\ 1 & x>0\end{cases}
$$

So $D f=g$. (Note that the value of $g(0)$ is irrelevant, any finite value can be assigned.) To comute $D^{2} f$, simply differentiate g in the same way. You should find that $D^{2} f=2 \delta$.
Problem 2: This is a fairly straight-forward application of the definitions.
Problem 3: Define for $n=1,2,3, \ldots$, the functions

$$
\chi_{n}(x)= \begin{cases}1 & x \in\left[n-\frac{1}{4^{n}}, n\right] \\ 0 & \text { otherwise }\end{cases}
$$

and set

$$
f(x)=\sum_{n=1}^{\infty} 2^{n} \chi_{n}(x)
$$

Now prove that both (2) and (3) hold for any k.

