Applied Analysis (APPM 5450): Midterm 1 - Solutions

8.30am - 9.50 am , Feb. 14, 2011. Closed books.

Problem 1: (21p) All operators in this problem are bounded linear operators on a Hilbert space. Which statements are necessarily true? No motivation required.
(a) Every bounded sequence in a Hilbert space has a weakly convergent subsequence.
(b) If A and B are self-adjoint operators, then $A+B$ is self-adjoint.
(c) If A and B are self-adjoint operators, then $A B$ is self-adjoint.
(d) If A and B are unitary operators, then $A+B$ is unitary.
(e) If A and B are unitary operators, then $A B$ is unitary.
(f) If A is skew-symmetric, then the operator $B=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}$ is unitary.
(g) If A is an isometric operator, then $\operatorname{ran}(A)=\left(\operatorname{ker}\left(A^{*}\right)\right)^{\perp}$.

Solution:

(a) TRUE. (Observe that the unit ball in a Hilbert space is weakly compact.)
(b) TRUE. (A simple calculation will demonstrate this.)
(c) FALSE. (Counter example: $H=\mathbb{C}^{2}, A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], A B=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$.)
(d) FALSE. (Counter example: $A=I, B=I, A+B=2 I$.)
(e) TRUE. (Note that for any $x, y \in H$, we have $\langle A B x, A B y\rangle=\langle B x, B y\rangle=\langle x, y\rangle$ where we first used that A is unitary, and then used that B is unitary. So $A B$ preserves the inner product (and is therefore 1-to-1). To prove that it is onto, consider $z \in H$. Since B is onto, there is a $y \in H$ such that $z=B y$. Since A is onto, there is an $x \in H$ such that $y=A x$. Therefore, $z=A B x$.)
(f) TRUE. (You can prove that $B^{*}=B^{-1}$ by simply taking the adjoint of the definition.)
(g) TRUE. (Note that when A is an isometry, $\operatorname{ran}(A)$ is necessarily closed.)

Problem 2: (29p) Let H_{1} denote the Hilbert space obtained by taking the completion of the set \mathcal{P} of trigonometric polynomials with respect to the norm induced by the inner product

$$
\langle u, v\rangle_{1}=\int_{-\pi}^{\pi} \overline{u(x)} v(x) d x
$$

and let H_{2} denote the Hilbert space induced by the inner product

$$
\langle u, v\rangle_{2}=\int_{-\pi}^{\pi} \overline{u(x)} v(x)(1-\cos (x)) d x .
$$

(a) Do the spaces H_{1} and H_{2} contain the same [equivalence classes of] functions?
(b) Does there exist a unitary map between H_{1} and H_{2} ?
(c) For which real numbers α is it the case that the sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ where $\varphi_{n}=n^{\alpha} \chi_{(-1 / n, 1 / n)}$ converges in norm in H_{1} ? Is the answer different if you consider weak convergence?
(d) Repeat question (c), but now do the exercise in H_{2}.
(e) Set $\rho_{n}(x)=\sin (n x)$. Does $\left(\rho_{n}\right)_{n=1}^{\infty}$ converge in either H_{1} or H_{2} ? Weakly? In norm?

Solution: First observe that $1-\cos x=2(\sin (x / 2))^{2} \sim(1 / 2) x^{2}$ as $x \rightarrow 0$. Also note that for both $i=1$ and $i=2$ we know that \mathcal{P} is dense in H_{i} so a sequence $w_{n} \rightharpoonup w$ in H_{i} iff (a) $\sup _{n}\left\|w_{n}\right\|_{i}<\infty$ and (b) $\left\langle w_{n}, u\right\rangle_{i} \rightarrow\langle w, u\rangle_{i}$ for all $u \in \mathcal{P}$.
(a). No. Set $u(x)=1 / x$. Then $\|u\|_{1}^{2}=\int_{-\pi}^{\pi} x^{-2} d x=\infty$ but $\|u\|_{2}^{2}=\int_{-\pi}^{\pi} x^{-2} 2(\sin (x / 2))^{2} d x \leq$ $\int_{-\pi}^{\pi}(1 / 2) d x=\pi$.
(b) Yes. H_{1} and H_{2} are both separable Hilbert spaces so they are unitarily equivalent. (You can explicitly construct orthonormal bases for the two spaces by performing Gram-Schmidt with respect to the two inner products to the sequence $\{1, \cos (x), \sin x, \cos (2 x), \sin (2 x), \cos (3 x), \ldots\}$.)

Alternatively, you can prove that the map $U: H_{2} \rightarrow H_{1}$ with $[U f](x)=\sqrt{1-\cos (x)} f(x)$ is an isometric bijection.
(c) $\left\|\varphi_{n}\right\|_{1}^{2}=\int_{-1 / n}^{1 / n} n^{2 \alpha} d x=2 n^{2 \alpha-1}$. If $\alpha>1 / 2$ then the sequence is unbounded and can converge neither weakly nor in norm. If $\alpha<1 / 2$ then $\varphi_{n} \rightarrow 0$ in norm (and hence weakly as well). For the case $\alpha=1 / 2$, observe (a) that the sequence is bounded, and (b) that for $u \in \mathcal{P}$ we have $\left|\left\langle\varphi_{n}, u\right\rangle_{1}\right|=\left|\int_{-1 / n}^{1 / n} n^{1 / 2} u(x) d x\right| \leq\left(\sup _{x}|u(x)|\right) \int_{-1 / n}^{1 / n} n^{1 / 2} d x=\left(\sup _{x}|u(x)|\right) 2 n^{-1 / 2} \rightarrow 0$ so $\varphi_{n} \rightharpoonup 0$.
(d) $\left\|\varphi_{n}\right\|_{2}^{2}=2 \int_{0}^{1 / n} n^{2 \alpha}(1-\cos x) d x=2 n^{2 \alpha}((1 / n)-\sin (1 / n)) \sim n^{2 \alpha-3}$. If $\alpha>3 / 2$ then $\left(\varphi_{n}\right)$ is unbounded and can converge neither weakly nor in norm. If $\alpha<3 / 2$ then $\varphi_{n} \rightarrow 0$ in norm (and hence weakly as well). When $\alpha=3 / 2$, observe (a) that the sequence is bounded, and (b) that for $u \in \mathcal{P}$ we have $\left|\left\langle\varphi_{n}, u\right\rangle_{2}\right| \leq \int_{-1 / n}^{1 / n} n^{3 / 2}|u(x)|(1 / 2) x^{2} d x \leq\left(\sup _{x}|u(x)|\right) \int_{0}^{1 / n} n^{3 / 2} x^{2} d x=$ $\left(\sup _{x}|u(x)|\right)(1 / 3) n^{-3 / 2} \rightarrow 0$ so $\varphi_{n} \rightharpoonup 0$.
(e) First observe that $\left(\rho_{n}\right)$ is bounded in both spaces. Next fix a function $v \in \mathcal{P}$. We have

$$
\begin{equation*}
\left|\int_{-\pi}^{\pi} \sin (n x) v(x) d x\right|=\left|\frac{1}{n} \int_{-\pi}^{\pi} \cos (n x) v^{\prime}(x) d x\right| \leq \frac{1}{n}\left\|v^{\prime}\right\|_{L^{1}(\mathbb{T})} \rightarrow 0 \quad \text { as } n \rightarrow 0 \tag{1}
\end{equation*}
$$

since the boundary conditions in the partial integration vanish due to periodicity. This immediately shows that $\left\langle\rho_{n}, v\right\rangle_{1} \rightarrow 0$ for all $v \in \mathcal{P}$ and therefore $\rho_{n} \rightharpoonup 0$ in H_{1}. We also have $\left\langle\rho_{n}, u\right\rangle_{2} \rightarrow 0$ for all $u \in \mathcal{P}$ since (1) holds for $v(x)=u(x)(1-\cos x)$. Therefore $\rho_{n} \rightharpoonup 0$ in H_{2}. To see that $\left(\rho_{n}\right)$ cannot converge in norm to zero, simply note that $\left\|\rho_{n}\right\|_{1}^{2}=\pi$ and
$\left\|\rho_{n}\right\|_{2}^{2}=\int_{-\pi}^{\pi} \sin ^{2}(n x)(1-\cos (x)) d x=\int_{-\pi}^{\pi} \frac{1-\cos (2 n x)}{2}(1-\cos (x)) d x=\int_{-\pi}^{\pi} \frac{1-\cos (2 n x)}{2} d x=\pi$.

Problem 3: (20p) Set $f(t)=|t|$ for $-\pi \leq t<\pi$ and extend f to be a 2π-periodic function. Is it the case that $f \in H^{k}(\mathbb{T})$ for any $k \geq 0$?

Hint: The Sobolev embedding theorem should very quickly provide at least a partial answer.

Solution: First we construct the Fourier expansion of f. Since f is real and even, its expansion consists of cosines only:

$$
f(x)=\beta_{0}+\sum_{n=1}^{\infty} \beta_{n} \cos (n x) .
$$

The constant is the average of f so $\beta_{0}=\pi / 2$. To determine β_{n} multiply both sides by $\cos (n x)$ and integrate:

$$
\int_{-\pi}^{\pi} f(x) \cos (n x) d x=\beta_{n} \int_{-\pi}^{\pi}(\cos (n x))^{2} d x
$$

We have

$$
\int_{-\pi}^{\pi}(\cos (n x))^{2} d x=\int_{-\pi}^{\pi} \frac{1+\cos (2 n x)}{2} d x=\pi
$$

and

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \cos (n x) d x=2 \int_{0}^{\pi} x \cos (n x) & d x=2\left[\frac{1}{n} x \sin (n x)\right]_{0}^{\pi}-2 \int_{0}^{\pi} \frac{1}{n} \sin (n x) d x \\
= & 2\left[\frac{1}{n^{2}} \cos (n x)\right]_{0}^{\pi}=\frac{2}{n^{2}}(\cos (n \pi)-1)=\frac{2}{n^{2}}\left((-1)^{n}-1\right)
\end{aligned}
$$

So

$$
f(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1,3,5, \ldots} \frac{1}{n^{2}} \cos (n x)=\sum_{n \in \mathbb{Z}} \alpha_{n} \frac{e^{i n x}}{\sqrt{2 \pi}}
$$

where

$$
\alpha_{n}= \begin{cases}\pi^{3 / 2} 2^{-1 / 2} & n=0 \\ 0 & n= \pm 2, \pm 4, \pm 6, \ldots \\ 2^{5 / 2} \pi^{-1 / 2} n^{-2} & n= \pm 1, \pm 3, \pm 5, \ldots\end{cases}
$$

We find that

$$
\|f\|_{H^{k}}^{2}=\frac{\pi^{3}}{2}+\sum_{n \text { odd }}|n|^{2 k} \frac{32}{\pi n^{4}}
$$

The sum is convergent if and only if $2 k-4<-1$, which is to say if $k<3 / 2$.
Answer: $f \in H^{k}$ if and only if $k<3 / 2$.
Partial answer alluded to in hint: Observe that $f \notin C^{1}$. If $k>3 / 2$, then $H^{k} \subseteq C^{1}$, and since $f \notin C^{1}$, it follows that $f \notin H^{k}$ when $k>3 / 2$.

Problem 4: (30p) Suppose that P is a projection on a Hilbert space H. Prove that the following are equivalent:
(i) P is orthogonal, i.e. $\operatorname{ker}(P)=\operatorname{ran}(P)^{\perp}$.
(ii) P is self-adjoint, i.e. $\langle P x, y\rangle=\langle x, P y\rangle \quad \forall x, y$.
(iii) $\|P\|=0$ or 1 .

Solution:

(a) $\Rightarrow(\mathrm{b})$: Assume $\operatorname{ker}(P)=\operatorname{ran}(P)^{\perp}$. Pick any $x, y \in H$. Then

$$
(P x, y)=(\underbrace{P x}_{\in \operatorname{ran}(P)}, P y+\underbrace{(I-P) y}_{\in \operatorname{ker}(P)})=(P x, P y)=(P x+(I-P) x, P y)=(x, P y) .
$$

$(\mathrm{b}) \Rightarrow(\mathrm{c})$: Assume that (b) holds. Then for any x,

$$
\|P x\|^{2}=(P x, P x)=\left(P^{2} x, x\right)=(P x, x) \leq\|P x\|\|x\|,
$$

so $\|P\| \leq 1$. Obviously it is possible for $\|P\|$ to be zero. We need to prove that the only possible non-zero value of $\|P\|$ is one. To this end, note that if $P \neq 0$, then $\operatorname{ran}(P) \neq\{0\}$. Now observe that if x is a non-zero element in $\operatorname{ran}(P)$, we have $P x=x$ so $\|P\| \geq 1$.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$: Assume that (a) does not hold. Then there exist $x \in \operatorname{ran}(P)$ and $y \in \operatorname{ker}(P)$ such that $(x, y) \neq 0$. Set $\alpha=\overline{(x, y)} /|(x, y)|$ and $z=\alpha y$. Then $z \in \operatorname{ker}(P)$ and $(x, z)=|(x, y)| \in \mathbb{R}_{+}$. Set

$$
w=x-z t
$$

Then $\|P w\|=\|x\|$, and

$$
\|w\|^{2}=\|x\|^{2}-2 t(x, z)+t^{2}\|z\|^{2} .
$$

For small t, we see that $\|w\|<\|x\|=\|P w\|$ so $\|P\|>1$.

