Applied Analysis (APPM 5450): Midterm 1 — Solutions

8.30am – 9.50am, Feb. 14, 2011. Closed books.

Problem 1: (21p) All operators in this problem are bounded linear operators on a Hilbert space. Which statements are necessarily true? No motivation required.

- (a) Every bounded sequence in a Hilbert space has a weakly convergent subsequence.
- (b) If A and B are self-adjoint operators, then A + B is self-adjoint.
- (c) If A and B are self-adjoint operators, then AB is self-adjoint.
- (d) If A and B are unitary operators, then A + B is unitary.
- (e) If A and B are unitary operators, then AB is unitary.
- (f) If A is skew-symmetric, then the operator $B = \sum_{n=0}^{\infty} \frac{A^n}{n!}$ is unitary.
- (g) If A is an isometric operator, then $\operatorname{ran}(A) = (\ker(A^*))^{\perp}$.

Solution:

- (a) TRUE. (Observe that the unit ball in a Hilbert space is weakly compact.)
- (b) TRUE. (A simple calculation will demonstrate this.)
- (c) FALSE. (Counter example: $H = \mathbb{C}^2$, $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $AB = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$.)
- (d) FALSE. (Counter example: A = I, B = I, A + B = 2I.)

(e) TRUE. (Note that for any $x, y \in H$, we have $\langle ABx, ABy \rangle = \langle Bx, By \rangle = \langle x, y \rangle$ where we first used that A is unitary, and then used that B is unitary. So AB preserves the inner product (and is therefore 1-to-1). To prove that it is onto, consider $z \in H$. Since B is onto, there is a $y \in H$ such that z = By. Since A is onto, there is an $x \in H$ such that y = Ax. Therefore, z = ABx.)

- (f) TRUE. (You can prove that $B^* = B^{-1}$ by simply taking the adjoint of the definition.)
- (g) TRUE. (Note that when A is an isometry, ran(A) is necessarily closed.)

Problem 2: (29p) Let H_1 denote the Hilbert space obtained by taking the completion of the set \mathcal{P} of trigonometric polynomials with respect to the norm induced by the inner product

$$\langle u, v \rangle_1 = \int_{-\pi}^{\pi} \overline{u(x)} v(x) \, dx$$

and let H_2 denote the Hilbert space induced by the inner product

$$\langle u, v \rangle_2 = \int_{-\pi}^{\pi} \overline{u(x)} v(x) \left(1 - \cos(x)\right) dx$$

- (a) Do the spaces H_1 and H_2 contain the same [equivalence classes of] functions?
- (b) Does there exist a unitary map between H_1 and H_2 ?
- (c) For which real numbers α is it the case that the sequence $(\varphi_n)_{n=1}^{\infty}$ where $\varphi_n = n^{\alpha} \chi_{(-1/n, 1/n)}$ converges in norm in H_1 ? Is the answer different if you consider weak convergence?
- (d) Repeat question (c), but now do the exercise in H_2 .
- (e) Set $\rho_n(x) = \sin(nx)$. Does $(\rho_n)_{n=1}^{\infty}$ converge in either H_1 or H_2 ? Weakly? In norm?

Solution: First observe that $1 - \cos x = 2(\sin(x/2))^2 \sim (1/2)x^2$ as $x \to 0$. Also note that for both i = 1 and i = 2 we know that \mathcal{P} is dense in H_i so a sequence $w_n \rightharpoonup w$ in H_i iff (a) $\sup_n ||w_n||_i < \infty$ and (b) $\langle w_n, u \rangle_i \rightarrow \langle w, u \rangle_i$ for all $u \in \mathcal{P}$.

(a). No. Set
$$u(x) = 1/x$$
. Then $||u||_1^2 = \int_{-\pi}^{\pi} x^{-2} dx = \infty$ but $||u||_2^2 = \int_{-\pi}^{\pi} x^{-2} 2 (\sin(x/2))^2 dx \le \int_{-\pi}^{\pi} (1/2) dx = \pi$.

(b) Yes. H_1 and H_2 are both separable Hilbert spaces so they are unitarily equivalent. (You can explicitly construct orthonormal bases for the two spaces by performing Gram-Schmidt with respect to the two inner products to the sequence $\{1, \cos(x), \sin x, \cos(2x), \sin(2x), \cos(3x), \ldots\}$.)

Alternatively, you can prove that the map $U: H_2 \to H_1$ with $[U f](x) = \sqrt{1 - \cos(x)} f(x)$ is an isometric bijection.

(c) $||\varphi_n||_1^2 = \int_{-1/n}^{1/n} n^{2\alpha} dx = 2 n^{2\alpha-1}$. If $\alpha > 1/2$ then the sequence is unbounded and can converge neither weakly nor in norm. If $\alpha < 1/2$ then $\varphi_n \to 0$ in norm (and hence weakly as well). For the case $\alpha = 1/2$, observe (a) that the sequence is bounded, and (b) that for $u \in \mathcal{P}$ we have $|\langle \varphi_n, u \rangle_1| = |\int_{-1/n}^{1/n} n^{1/2} u(x) dx| \leq (\sup_x |u(x)|) \int_{-1/n}^{1/n} n^{1/2} dx = (\sup_x |u(x)|) 2 n^{-1/2} \to 0$ so $\varphi_n \to 0$.

(d) $||\varphi_n||_2^2 = 2 \int_0^{1/n} n^{2\alpha} (1 - \cos x) \, dx = 2 n^{2\alpha} \left((1/n) - \sin(1/n) \right) \sim n^{2\alpha-3}$. If $\alpha > 3/2$ then (φ_n) is unbounded and can converge neither weakly nor in norm. If $\alpha < 3/2$ then $\varphi_n \to 0$ in norm (and hence weakly as well). When $\alpha = 3/2$, observe (a) that the sequence is bounded, and (b) that for $u \in \mathcal{P}$ we have $|\langle \varphi_n, u \rangle_2| \leq \int_{-1/n}^{1/n} n^{3/2} |u(x)| (1/2) x^2 \, dx \leq \left(\sup_x |u(x)| \right) \int_0^{1/n} n^{3/2} x^2 \, dx = \left(\sup_x |u(x)| \right) (1/3) n^{-3/2} \to 0$ so $\varphi_n \to 0$.

(e) First observe that (ρ_n) is bounded in both spaces. Next fix a function $v \in \mathcal{P}$. We have

(1)
$$\left| \int_{-\pi}^{\pi} \sin(nx) v(x) \, dx \right| = \left| \frac{1}{n} \int_{-\pi}^{\pi} \cos(nx) v'(x) \, dx \right| \le \frac{1}{n} ||v'||_{L^{1}(\mathbb{T})} \to 0 \quad \text{as } n \to 0$$

since the boundary conditions in the partial integration vanish due to periodicity. This immediately shows that $\langle \rho_n, v \rangle_1 \to 0$ for all $v \in \mathcal{P}$ and therefore $\rho_n \rightharpoonup 0$ in H_1 . We also have $\langle \rho_n, u \rangle_2 \to 0$ for all $u \in \mathcal{P}$ since (1) holds for $v(x) = u(x) (1 - \cos x)$. Therefore $\rho_n \rightharpoonup 0$ in H_2 . To see that (ρ_n) cannot converge in norm to zero, simply note that $||\rho_n||_1^2 = \pi$ and

$$||\rho_n||_2^2 = \int_{-\pi}^{\pi} \sin^2(nx)(1-\cos(x)) \, dx = \int_{-\pi}^{\pi} \frac{1-\cos(2nx)}{2}(1-\cos(x)) \, dx = \int_{-\pi}^{\pi} \frac{1-\cos(2nx)}{2} \, dx = \pi.$$

Problem 3: (20p) Set f(t) = |t| for $-\pi \le t < \pi$ and extend f to be a 2π -periodic function. Is it the case that $f \in H^k(\mathbb{T})$ for any $k \ge 0$?

Hint: The Sobolev embedding theorem should very quickly provide at least a partial answer.

Solution: First we construct the Fourier expansion of f. Since f is real and even, its expansion consists of cosines only:

$$f(x) = \beta_0 + \sum_{n=1}^{\infty} \beta_n \cos(nx).$$

The constant is the average of f so $\beta_0 = \pi/2$. To determine β_n multiply both sides by $\cos(nx)$ and integrate:

$$\int_{-\pi}^{\pi} f(x) \cos(nx) \, dx = \beta_n \int_{-\pi}^{\pi} \left(\cos(nx) \right)^2 \, dx.$$

We have

$$\int_{-\pi}^{\pi} \left(\cos(nx)\right)^2 dx = \int_{-\pi}^{\pi} \frac{1 + \cos(2nx)}{2} \, dx = \pi,$$

and

$$\int_{-\pi}^{\pi} f(x)\cos(nx)\,dx = 2\,\int_{0}^{\pi} x\cos(nx)\,dx = 2\left[\frac{1}{n}x\,\sin(nx)\right]_{0}^{\pi} - 2\,\int_{0}^{\pi}\frac{1}{n}\sin(nx)\,dx$$
$$= 2\,\left[\frac{1}{n^{2}}\cos(nx)\right]_{0}^{\pi} = \frac{2}{n^{2}}(\cos(n\pi) - 1) = \frac{2}{n^{2}}((-1)^{n} - 1).$$

 So

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1,3,5,\dots} \frac{1}{n^2} \cos(nx) = \sum_{n \in \mathbb{Z}} \alpha_n \frac{e^{inx}}{\sqrt{2\pi}}$$

where

$$\alpha_n = \begin{cases} \pi^{3/2} 2^{-1/2} & n = 0\\ 0 & n = \pm 2, \pm 4, \pm 6, \dots\\ 2^{5/2} \pi^{-1/2} n^{-2} & n = \pm 1, \pm 3, \pm 5, \dots \end{cases}$$

We find that

$$||f||_{H^k}^2 = \frac{\pi^3}{2} + \sum_{n \text{ odd}} |n|^{2k} \frac{32}{\pi n^4}$$

The sum is convergent if and only if 2k - 4 < -1, which is to say if k < 3/2.

Answer: $f \in H^k$ if and only if k < 3/2.

Partial answer alluded to in hint: Observe that $f \notin C^1$. If k > 3/2, then $H^k \subseteq C^1$, and since $f \notin C^1$, it follows that $f \notin H^k$ when k > 3/2.

Problem 4: (30p) Suppose that P is a projection on a Hilbert space H. Prove that the following are equivalent:

- (i) P is orthogonal, *i.e.* ker(P) = ran(P)^{\perp}.
- (ii) P is self-adjoint, *i.e.* $\langle P x, y \rangle = \langle x, P y \rangle \quad \forall x, y.$
- (iii) ||P|| = 0 or 1.

Solution:

$$\underbrace{(\mathbf{a}) \Rightarrow (\mathbf{b}):}_{(Px, y) = (\underbrace{Px}_{\in \operatorname{ran}(P)}, \underbrace{Py}_{\in \operatorname{ker}(P)} + \underbrace{(I - P)y}_{\in \operatorname{ker}(P)}) = (Px, Py) = (Px + (I - P)x, Py) = (x, Py).$$

(b) \Rightarrow (c): Assume that (b) holds. Then for any x,

$$||Px||^{2} = (Px, Px) = (P^{2}x, x) = (Px, x) \le ||Px|| \, ||x||,$$

so $||P|| \leq 1$. Obviously it is possible for ||P|| to be zero. We need to prove that the only possible non-zero value of ||P|| is one. To this end, note that if $P \neq 0$, then $\operatorname{ran}(P) \neq \{0\}$. Now observe that if x is a non-zero element in $\operatorname{ran}(P)$, we have Px = x so $||P|| \geq 1$.

 $\underbrace{(\mathbf{c}) \Rightarrow (\mathbf{a}):}_{(x, y) \neq 0} \text{ Assume that } (\mathbf{a}) \text{ does not hold. Then there exist } x \in \operatorname{ran}(P) \text{ and } y \in \ker(P) \text{ such that } (x, y) \neq 0. \text{ Set } \alpha = \overline{(x, y)} / |(x, y)| \text{ and } z = \alpha y. \text{ Then } z \in \ker(P) \text{ and } (x, z) = |(x, y)| \in \mathbb{R}_+. \text{ Set } w = x - zt.$

Then ||Pw|| = ||x||, and

$$||w||^2 = ||x||^2 - 2t(x, z) + t^2 ||z||^2.$$
 For small t, we see that $||w|| < ||x|| = ||Pw||$ so $||P|| > 1$.