Applied Analysis (APPM 5450): Midterm 2

8.30am - 9.50am, Mar. 14, 2011. Closed books.

The problems are worth 20 points each. Briefly motivate all answers except those to Problem 1.

Problem 1: No motivation required for these questions.

- (a) Give an example of a bounded linear operator on a Hilbert space that is positive, but not coercive.
- (b) Let H be an infinite dimensional Hilbert space. Which of the following sets can be the spectrum of a compact self-adjoint operator?
 - $\begin{array}{l} (1) \quad A_{1} = \{1/n\}_{n=1}^{\infty} = \{1, 1/2, 1/3, 1/4, \dots\} \\ (2) \quad A_{2} = \{1\} \cup \{1 1/n\}_{n=1}^{\infty} = \{1, 0, 1/2, 2/3, 3/4, 4/5, \dots\}. \\ (3) \quad A_{3} = \{0, 1\} \cup \{e^{i/n}\}_{n=1}^{\infty} = \{0, 1, e^{i}, e^{i/2}, e^{i/3}, e^{i/4}, \dots\}. \\ (4) \quad A_{4} = \{1, 2, 3\}. \\ (5) \quad A_{5} = \{-1, 0\}. \end{array}$
- (c) Define $\varphi \in \mathcal{S}(\mathbb{R})$ via $\varphi(x) = e^{-x^2}$. What is $\langle \delta'', \varphi \rangle$?
- (d) Define $\varphi \in \mathcal{S}(\mathbb{R})$ via $\varphi(x) = e^{-x^2}$. What is $\delta'' * \varphi$?

Problem 2: Set $H = \ell^2(\mathbb{Z})$ and let $A \in \mathcal{B}(H)$ denote the rightshift operator (i.e. if $u \in H$ and v = A u, then $v_n = u_{n-1}$).

(a) Let λ be a complex number such that $|\lambda| = 1$. Prove that you can construct $u^{(n)} \in H$ such that $||u^{(n)}|| = 1$ and $\lim_{n \to \infty} ||A u^{(n)} - \lambda u^{(n)}|| = 0$.

(b) Determine the spectrum of A.

Problem 3: Define $T \in \mathcal{S}^*(\mathbb{R})$ via

$$\langle T, \varphi \rangle = \lim_{\varepsilon \searrow 0} \int_{|x| \ge \varepsilon} \frac{1}{x} \varphi(x) \, dx.$$

Construct a continuous function f of at most polynomial growth such that $T = \partial^p f$ for some finite integer p.

Problem 4: Fix $\psi \in \mathcal{S}(\mathbb{R})$. Define the map

$$B: \mathcal{S}(\mathbb{R}) \to \mathbb{C}: \varphi \mapsto \int_{\mathbb{R}} \psi(x) \, \varphi'(x) \, dx.$$

Prove that B is continuous. What order is B?

Problem 5: Set $H = L^2(\mathbb{T})$ and define $W \in \mathcal{B}(H)$ via

$$[Wu](x) = \int_{-\pi}^{\pi} \sin(x - y) \, u(y) \, dy.$$

Compute the spectrum of W and identify its different components (i.e. determine $\sigma_{\rm p}(W)$, $\sigma_{\rm c}(W)$, and $\sigma_{\rm r}(W)$). Is W compact? Self-adjoint?