Applied Analysis (APPM 5450): Midterm 2 - Solutions

8.30am - 9.50am, Mar. 14, 2011. Closed books.

The problems are worth 20 points each. Briefly motivate all answers except those to Problem 1.
Problem 1: No motivation required for these questions.
(a) Give an example of a bounded linear operator on a Hilbert space that is positive, but not coercive.
(b) Let H be an infinite dimensional Hilbert space. Which of the following sets can be the spectrum of a compact self-adjoint operator?
(1) $A_{1}=\{1 / n\}_{n=1}^{\infty}=\{1,1 / 2,1 / 3,1 / 4, \ldots\}$
(2) $A_{2}=\{1\} \cup\{1-1 / n\}_{n=1}^{\infty}=\{1,0,1 / 2,2 / 3,3 / 4,4 / 5, \ldots\}$.
(3) $A_{3}=\{0,1\} \cup\left\{e^{i / n}\right\}_{n=1}^{\infty}=\left\{0,1, e^{i}, e^{i / 2}, e^{i / 3}, e^{i / 4}, \ldots\right\}$.
(4) $A_{4}=\{1,2,3\}$.
(5) $A_{5}=\{-1,0\}$.
(c) Define $\varphi \in \mathcal{S}(\mathbb{R})$ via $\varphi(x)=e^{-x^{2}}$. What is $\left\langle\delta^{\prime \prime}, \varphi\right\rangle$?
(d) Define $\varphi \in \mathcal{S}(\mathbb{R})$ via $\varphi(x)=e^{-x^{2}}$. What is $\delta^{\prime \prime} * \varphi$?

Solution:

(a) There are obviously many possible examples. A couple of simple ones:

- $H=L^{2}(I)$ where $I=[0,1]$ and $[A u](x)=x u(x)$.
- $H=\ell^{2}(\mathbb{N})$ and $A\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(\frac{1}{1} x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \frac{1}{4} x_{4}, \ldots\right)$
(b) Only A_{5}. (Grading guide: -2 p for each mistake.)
(a) A_{1} does not include zero (and is also not closed).
(b) A_{2} has an accumulation point at 1.
(c) A_{3} is not a subset of the real line.
(d) A_{4} does not include zero.
(e) Let u be a non-zero vector in H and set $A x=-\frac{1}{\|u\|^{2}}(u, x) u$.

Then A is self-adjoint and compact, and $\sigma(A)=A_{5}$.
(c) -2
(d) The function $x \mapsto \varphi^{\prime \prime}(x)=\left(4 x^{2}-2\right) e^{-x^{2}}$.

Problem 2: Set $H=\ell^{2}(\mathbb{Z})$ and let $A \in \mathcal{B}(H)$ denote the rightshift operator (i.e. if $u \in H$ and $v=A u$, then $\left.v_{n}=u_{n-1}\right)$.
(a) Let λ be a complex number such that $|\lambda|=1$. Prove that you can construct $u^{(n)} \in H$ such that $\left\|u^{(n)}\right\|=1$ and $\lim _{n \rightarrow \infty}\left\|A u^{(n)}-\lambda u^{(n)}\right\|=0$.
(b) Determine the spectrum of A.

Solution:

(a) Suppose $|\lambda|=1$ and set $R_{\lambda}=A-\lambda I$. First verify that R_{λ} is injective by noting that if $R_{\lambda} u=0$, then $u_{n}=\lambda^{-n} u_{0}$ which implies that $\left|u_{n}\right|=\left|u_{0}\right|$ for all n. The only solution is therefore $u=0$. Next observe that the range of R_{λ} is dense since

$$
\overline{\operatorname{ran}(A-\lambda I)}=\left(\operatorname{ker}\left(A^{*}-\lambda I\right)\right)^{\perp}=\{0\}^{\perp}=H .
$$

(The proof that $A-\lambda I$ is injective immediately carries over to a proof that $A^{*}-\lambda I$ is injective since A^{*} is simply left-shift.) Finally observe that $A-\lambda I$ is not onto since, e.g., the zero'th canonical basis vector $e^{(0)}$ does not belong to the range. ${ }^{1}$ The closed range theorem now implies that R_{λ} cannot be coercive since its range is not closed.
(b) Set

$$
D=\{\lambda \in \mathbb{C}:|\lambda|=1\} .
$$

We proved in part (a) that $D \subseteq \sigma_{\mathrm{c}}(A)$. Observe next that A is a unitary operator. It follows ${ }^{2}$ that $\sigma(A) \subseteq D$ and consequently

$$
\sigma(A)=\sigma_{\mathrm{c}}(A)=D \quad \sigma_{\mathrm{p}}(A)=\sigma_{\mathrm{r}}(A)=\emptyset
$$

Alternative explicit proof: Let $\mathcal{F}: L^{2}(\mathbb{T}) \rightarrow \ell^{2}(\mathbb{Z})$ denote the standard Fourier transform. We will exploit that \mathcal{F} is unitary, and consequently the operator $T=\mathcal{F}^{*} A \mathcal{F}$ has the same spectral properties as A. A simple calculation shows that

$$
[T U](x)=e^{i x} U(x)
$$

Given a λ such that $|\lambda|=1$, pick θ such that $\lambda=e^{i \theta}$. Then set

$$
U^{(n)}(x)= \begin{cases}\sqrt{\frac{n}{2}} & \text { when }|x-\theta| \leq 1 / n \\ 0 & \text { when }|x-\theta|>1 / n\end{cases}
$$

It follows that $\left\|U^{(n)}\right\|=1$ and $\lim _{n \rightarrow \infty}\left\|T U^{(n)}-\lambda U^{(n)}\right\|=0$. Now set $u^{(n)}=\mathcal{F} U^{(n)}$.

[^0]Problem 3: Define $T \in \mathcal{S}^{*}(\mathbb{R})$ via

$$
\langle T, \varphi\rangle=\lim _{\varepsilon \searrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \varphi(x) d x \text {. }
$$

Construct a continuous function f of at most polynomial growth such that $T=\partial^{p} f$ for some finite integer p.

Solution: First we integrate the function $1 / x$ in a classical sense to find a candidate for a distributional primitive function.

$$
\iint \frac{1}{x}=\int(\log |x|+A)=x \log |x|-x+A x+B
$$

Set $A=1$ and $B=0$ to obtain the candidate

$$
f(x)=x \log |x| .
$$

The function f is continuous and of polynomial growth. It remains to prove that $f^{\prime \prime}=T$ in a distributional sense.

$$
\begin{aligned}
\left\langle f^{\prime \prime}, \varphi\right\rangle & =\left\langle f, \varphi^{\prime \prime}\right\rangle \\
& \stackrel{(1)}{=} \lim _{\varepsilon \searrow 0}\left(\int_{-\infty}^{-\varepsilon} f \varphi^{\prime \prime}+\int_{\varepsilon}^{\infty} f \varphi^{\prime \prime}\right) \\
& \stackrel{(2)}{=} \lim _{\varepsilon \searrow 0}\left(\left[f \varphi^{\prime}\right]_{-\infty}^{-\varepsilon}-\int_{-\infty}^{-\varepsilon} f^{\prime} \varphi^{\prime}+\left[f \varphi^{\prime}\right]_{\varepsilon}^{\infty}-\int_{\varepsilon}^{\infty} f^{\prime} \varphi^{\prime}\right) \\
& \stackrel{(3)}{=} \lim _{\varepsilon \searrow 0}\left(-\int_{-\infty}^{-\varepsilon} f^{\prime} \varphi^{\prime}-\int_{\varepsilon}^{\infty} f^{\prime} \varphi^{\prime}\right) \\
& \stackrel{(4)}{=} \lim _{\varepsilon \searrow 0}\left(-\left[f^{\prime} \varphi\right]_{-\infty}^{-\varepsilon}-\int_{-\infty}^{-\varepsilon} f^{\prime \prime} \varphi-\left[f^{\prime} \varphi\right]_{\varepsilon}^{\infty}-\int_{\varepsilon}^{\infty} f^{\prime \prime} \varphi\right) \\
& \stackrel{(5)}{=} \lim _{\varepsilon \searrow 0}(-\log (\varepsilon) \varphi(-\varepsilon)+\log (\varepsilon) \varphi(\varepsilon))+\langle T, \varphi\rangle .
\end{aligned}
$$

Relation (1) holds since the integrand is continuous.
Relation (2) is plain partial integration.
Relation (3) holds since $f \varphi^{\prime}$ is a continuous function.
Relation (4) is plain partial integration.
Relation (5) holds since $f^{\prime \prime}(x)=1 / x$ in the domains of integration.
(Note that all limits at $\pm \infty$ vanish since $f \varphi^{\prime}$ and $f^{\prime} \varphi$ both tend to zero since $\varphi \in \mathcal{S}$ and f and f^{\prime} have at most polynomial growth.)

Finally we observe that

$$
\lim _{\varepsilon \searrow 0}(-\log (\varepsilon) \varphi(-\varepsilon)+\log (\varepsilon) \varphi(\varepsilon))=\lim _{\varepsilon \searrow 0} \log (\varepsilon)(\varphi(\varepsilon)-\varphi(-\varepsilon))=0
$$

since

$$
|\varphi(\varepsilon)-\varphi(-\varepsilon)| \leq 2 \varepsilon\left\|\varphi^{\prime}\right\|_{\mathrm{u}}
$$

and

$$
\lim _{\varepsilon \searrow 0} \varepsilon \log (\varepsilon)=0 .
$$

Problem 4: Fix $\psi \in \mathcal{S}(\mathbb{R})$. Define the map

$$
B: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}: \varphi \mapsto \int_{\mathbb{R}} \psi(x) \varphi^{\prime}(x) d x
$$

Prove that B is continuous. What order is B ?

Solution:

First observe that via a partial integration we can rewrite

$$
B(\varphi)=-\int_{-\infty}^{\infty} \psi^{\prime}(x) \varphi(x) d x .
$$

Then

$$
|B(\varphi)|=\left|-\int_{-\infty}^{\infty} \psi^{\prime}(x) \varphi(x) d x\right| \leq \int_{-\infty}^{\infty}\left|\psi^{\prime}(x)\right||\varphi(x)| d x \leq\left\|\psi^{\prime}\right\|_{L^{1}}\|\varphi\|_{0,0} .
$$

Observe that $\left\|\psi^{\prime}\right\|_{L^{1}}$ is finite ${ }^{3}$ since $\psi \in \mathcal{S}$ so B is continuous and has order zero.

[^1]Problem 5: Set $H=L^{2}(\mathbb{T})$ and define $W \in \mathcal{B}(H)$ via

$$
[W u](x)=\int_{-\pi}^{\pi} \sin (x-y) u(y) d y .
$$

Compute the spectrum of W and identify its different components (i.e. determine $\sigma_{\mathrm{p}}(W), \sigma_{\mathrm{c}}(W)$, and $\sigma_{\mathrm{r}}(W)$). Is W compact? Self-adjoint?

Solution: We define the canonical basis for H via

$$
e_{n}(x)=\frac{e^{i n x}}{\sqrt{2 \pi}}, \quad n \in \mathbb{Z}
$$

and the corresponding canonical projections P_{n} via

$$
\left[P_{n} u\right](x)=e_{n}(x)\left\langle e_{n}, u\right\rangle=\frac{e^{i n x}}{2 \pi} \int_{-\pi}^{\pi} e^{-i n y} u(y) d y
$$

Then observe that W can be written

$$
\begin{aligned}
& {[W u](x)=\int_{-\pi}^{\pi} \frac{e^{i(x-y)}-e^{-i(x-y)}}{2 i} u(y) d y} \\
& \quad=\frac{e^{i x}}{2 i} \int_{-\pi}^{\pi} e^{-i y} u(y) d y-\frac{e^{-i x}}{2 i} \int_{-\pi}^{\pi} e^{i y} u(y) d y=-i \pi\left[P_{1} u\right](x)+i \pi\left[P_{-1} u\right](x) .
\end{aligned}
$$

It follows that

$$
\sigma(W)=\sigma_{p}(W)=\{0, i \pi,-i \pi\}
$$

and consequently $\sigma_{\mathrm{c}}(W)=\sigma_{\mathrm{r}}(W)=\emptyset$.

Alternative solution: Recalling the trig identity

$$
\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)
$$

we write

$$
[W u](x)=\sin (x) \int_{-\pi}^{\pi} \cos (y) u(y) d y-\cos (x) \int_{-\pi}^{\pi} \sin (y) u(y) d y .
$$

Defining two orthonormal unit vectors v_{1} and v_{2} via

$$
v_{1}(x)=\frac{1}{\sqrt{\pi}} \sin (x), \quad v_{2}(x)=\frac{1}{\sqrt{\pi}} \cos (x),
$$

we can therefore write W as

$$
W u=\pi v_{1}\left\langle v_{2}, u\right\rangle-\pi v_{2}\left\langle v_{1}, u\right\rangle .
$$

Now set $G=\operatorname{span}\left\{v_{1}, v_{2}\right\}$ and observe that both G and G^{\perp} are invariant subspaces of W. The restriction of W to G has the matrix

$$
\mathrm{W}=\left[\begin{array}{cc}
0 & \pi \\
-\pi & 0
\end{array}\right]
$$

and W has the eigenvalues $\pm i \pi$. The restriction of W to G^{\perp} is zero. Therefore

$$
\sigma(W)=\sigma_{p}(W)=\{0, i \pi,-i \pi\} .
$$

[^0]: ${ }^{1}$ To prove this, suppose $A u-\lambda u=e^{(0)}$. Then for non-zero n, we have $u_{n-1}=\lambda u_{n}$ so $u_{n}=\lambda^{-1-n} u_{-1}$ for negative n and $u_{n}=\lambda^{-n} u_{0}$ for positive n. The only way for u to be in H is for u to be the zero vector which is impossible.
 ${ }^{2}$ The explicit proof is simple: For $|\lambda|>1$ observe that $A-\lambda I=-\lambda\left(I-\lambda^{-1} A\right)$ and now the inverse can explicitly be constructed via a Neumann series since $\left\|\lambda^{-1} A\right\|=|\lambda|^{-1}<1$. Analogously, if $|\lambda|<1$, then $A-\lambda I=A\left(I-\lambda A^{*}\right)$ which is invertible since A is invertible and since $\left\|\lambda A^{*}\right\|=|\lambda|<1$.

[^1]: ${ }^{3}$ To be precise $\left\|\psi^{\prime}\right\|_{L^{1}}=\int\left|\psi^{\prime}\right| \leq \int\left(1+x^{2}\right)\|\psi\|_{0,2}=\pi\|\psi\|_{0,2}<\infty$.

