
Applied Analysis (APPM 5450): Midterm 2 — Solutions
8.30am – 9.50am, Mar. 14, 2011. Closed books.

The problems are worth 20 points each. Briefly motivate all answers except those to Problem 1.

Problem 1: No motivation required for these questions.

(a) Give an example of a bounded linear operator on a Hilbert space that is positive, but not
coercive.

(b) Let H be an infinite dimensional Hilbert space. Which of the following sets can be the
spectrum of a compact self-adjoint operator?
(1) A1 = {1/n}∞n=1 = {1, 1/2, 1/3, 1/4, . . . }
(2) A2 = {1} ∪ {1− 1/n}∞n=1 = {1, 0, 1/2, 2/3, 3/4, 4/5, . . . }.
(3) A3 = {0, 1} ∪ {ei/n}∞n=1 = {0, 1, ei, ei/2, ei/3, ei/4, . . . }.
(4) A4 = {1, 2, 3}.
(5) A5 = {−1, 0}.

(c) Define φ ∈ S(R) via φ(x) = e−x2
. What is ⟨δ′′, φ⟩?

(d) Define φ ∈ S(R) via φ(x) = e−x2
. What is δ′′ ∗ φ?

Solution:

(a) There are obviously many possible examples. A couple of simple ones:

• H = L2(I) where I = [0, 1] and [Au](x) = xu(x).
• H = ℓ2(N) and A (x1, x2, x3, x4, . . . ) = (11 x1,

1
2 x2,

1
3 x3,

1
4 x4, . . . )

(b) Only A5. (Grading guide: -2p for each mistake.)

(a) A1 does not include zero (and is also not closed).
(b) A2 has an accumulation point at 1.
(c) A3 is not a subset of the real line.
(d) A4 does not include zero.
(e) Let u be a non-zero vector in H and set Ax = − 1

||u||2 (u, x)u.

Then A is self-adjoint and compact, and σ(A) = A5.

(c) −2

(d) The function x 7→ φ′′(x) = (4x2 − 2) e−x2
.



Problem 2: Set H = ℓ2(Z) and let A ∈ B(H) denote the rightshift operator (i.e. if u ∈ H and
v = Au, then vn = un−1).

(a) Let λ be a complex number such that |λ| = 1. Prove that you can construct u(n) ∈ H such

that ||u(n)|| = 1 and lim
n→∞

||Au(n) − λu(n)|| = 0.

(b) Determine the spectrum of A.

Solution:

(a) Suppose |λ| = 1 and set Rλ = A − λ I. First verify that Rλ is injective by noting that if
Rλu = 0, then un = λ−n u0 which implies that |un| = |u0| for all n. The only solution is therefore
u = 0. Next observe that the range of Rλ is dense since

ran(A− λ I) =
(
ker(A∗ − λ I)

)⊥
= {0}⊥ = H.

(The proof that A−λI is injective immediately carries over to a proof that A∗−λI is injective since
A∗ is simply left-shift.) Finally observe that A − λI is not onto since, e.g., the zero’th canonical

basis vector e(0) does not belong to the range.1 The closed range theorem now implies that Rλ

cannot be coercive since its range is not closed.

(b) Set
D = {λ ∈ C : |λ| = 1}.

We proved in part (a) that D ⊆ σc(A). Observe next that A is a unitary operator. It follows2 that
σ(A) ⊆ D and consequently

σ(A) = σc(A) = D σp(A) = σr(A) = ∅.

Alternative explicit proof: Let F : L2(T) → ℓ2(Z) denote the standard Fourier transform. We
will exploit that F is unitary, and consequently the operator T = F∗AF has the same spectral
properties as A. A simple calculation shows that

[T U ](x) = eix U(x).

Given a λ such that |λ| = 1, pick θ such that λ = eiθ. Then set

U (n)(x) =

{ √
n
2 when |x− θ| ≤ 1/n

0 when |x− θ| > 1/n.

It follows that ||U (n)|| = 1 and limn→∞ ||T U (n) − λU (n)|| = 0. Now set u(n) = F U (n).

1To prove this, suppose Au − λu = e(0). Then for non-zero n, we have un−1 = λun so un = λ−1−n u−1 for
negative n and un = λ−n u0 for positive n. The only way for u to be in H is for u to be the zero vector which is
impossible.

2The explicit proof is simple: For |λ| > 1 observe that A−λ I = −λ (I−λ−1A) and now the inverse can explicitly
be constructed via a Neumann series since ||λ−1A|| = |λ|−1 < 1. Analogously, if |λ| < 1, then A−λ I = A (I−λA∗)
which is invertible since A is invertible and since ||λA∗|| = |λ| < 1.



Problem 3: Define T ∈ S∗(R) via

⟨T, φ⟩ = lim
ε↘0

∫
|x|≥ε

1

x
φ(x) dx.

Construct a continuous function f of at most polynomial growth such that T = ∂pf for some finite
integer p.

Solution: First we integrate the function 1/x in a classical sense to find a candidate for a distri-
butional primitive function.∫ ∫

1

x
=

∫
(log |x|+A) = x log |x| − x+Ax+B

Set A = 1 and B = 0 to obtain the candidate

f(x) = x log |x|.
The function f is continuous and of polynomial growth. It remains to prove that f ′′ = T in a
distributional sense.

⟨f ′′, φ⟩ =⟨f, φ′′⟩
(1)
= lim

ε↘0

(∫ −ε

−∞
f φ′′ +

∫ ∞

ε
f φ′′

)
(2)
= lim

ε↘0

([
f φ′]−ε

−∞ −
∫ −ε

−∞
f ′ φ′ +

[
f φ′]∞

ε
−

∫ ∞

ε
f ′ φ′

)
(3)
= lim

ε↘0

(
−
∫ −ε

−∞
f ′ φ′ −

∫ ∞

ε
f ′ φ′

)
(4)
= lim

ε↘0

(
−
[
f ′ φ

]−ε

−∞ −
∫ −ε

−∞
f ′′ φ−

[
f ′ φ

]∞
ε

−
∫ ∞

ε
f ′′ φ

)
(5)
= lim

ε↘0

(
− log(ε)φ(−ε) + log(ε)φ(ε)

)
+ ⟨T, φ⟩.

Relation (1) holds since the integrand is continuous.
Relation (2) is plain partial integration.
Relation (3) holds since f φ′ is a continuous function.
Relation (4) is plain partial integration.
Relation (5) holds since f ′′(x) = 1/x in the domains of integration.
(Note that all limits at ±∞ vanish since f φ′ and f ′ φ both tend to zero since φ ∈ S and f and f ′

have at most polynomial growth.)

Finally we observe that

lim
ε↘0

(
− log(ε)φ(−ε) + log(ε)φ(ε)

)
= lim

ε↘0
log(ε)

(
φ(ε)− φ(−ε)

)
= 0

since ∣∣φ(ε)− φ(−ε)
∣∣ ≤ 2 ε ||φ′||u

and
lim
ε↘0

ε log(ε) = 0.



Problem 4: Fix ψ ∈ S(R). Define the map

B : S(R) → C : φ 7→
∫
R
ψ(x)φ′(x) dx.

Prove that B is continuous. What order is B?

Solution:

First observe that via a partial integration we can rewrite

B(φ) = −
∫ ∞

−∞
ψ′(x)φ(x) dx.

Then

|B(φ)| =
∣∣∣∣− ∫ ∞

−∞
ψ′(x)φ(x) dx

∣∣∣∣ ≤ ∫ ∞

−∞
|ψ′(x)| |φ(x)| dx ≤ ||ψ′||L1 ||φ||0,0.

Observe that ||ψ′||L1 is finite3 since ψ ∈ S so B is continuous and has order zero.

3To be precise ||ψ′||L1 =
∫
|ψ′| ≤

∫
(1 + x2) ||ψ||0,2 = π ||ψ||0,2 <∞.



Problem 5: Set H = L2(T) and define W ∈ B(H) via

[W u](x) =

∫ π

−π
sin(x− y)u(y) dy.

Compute the spectrum of W and identify its different components (i.e. determine σp(W ), σc(W ),
and σr(W )). Is W compact? Self-adjoint?

Solution: We define the canonical basis for H via

en(x) =
einx√
2π
, n ∈ Z,

and the corresponding canonical projections Pn via

[Pnu](x) = en(x) ⟨en, u⟩ =
einx

2π

∫ π

−π
e−inyu(y) dy.

Then observe that W can be written

[W u](x) =

∫ π

−π

ei(x−y) − e−i(x−y)

2i
u(y) dy

=
eix

2i

∫ π

−π
e−iy u(y) dy − e−ix

2i

∫ π

−π
eiy u(y) dy = −iπ[P1u](x) + iπ[P−1u](x).

It follows that
σ(W ) = σp(W ) = {0, iπ, −iπ},

and consequently σc(W ) = σr(W ) = ∅.

Alternative solution: Recalling the trig identity

sin(x− y) = sin(x) cos(y)− cos(x) sin(y)

we write

[W u](x) = sin(x)

∫ π

−π
cos(y)u(y) dy − cos(x)

∫ π

−π
sin(y)u(y) dy.

Defining two orthonormal unit vectors v1 and v2 via

v1(x) =
1√
π
sin(x), v2(x) =

1√
π
cos(x),

we can therefore write W as

W u = π v1 ⟨v2, u⟩ − π v2 ⟨v1, u⟩.
Now set G = span{v1, v2} and observe that both G and G⊥ are invariant subspaces of W . The
restriction of W to G has the matrix

W =

[
0 π
−π 0

]
and W has the eigenvalues ±iπ. The restriction of W to G⊥ is zero. Therefore

σ(W ) = σp(W ) = {0, iπ, −iπ}.


