Applied Analysis (APPM 5450): Midterm 3

 8.30am - 9.50am, April 18, 2011. Closed books.Each problem is worth 25 point.
Problem 1: In this problem, X denotes a set, and \mathcal{A} denotes a σ-algebra on X.
(a) State the definition of a measure μ on (X, \mathcal{A}).
(b) Let $\left(\Omega_{j}\right)_{j=1}^{\infty}$ denote a sequence in \mathcal{A} such that $\mu\left(\Omega_{1}\right)<\infty$, and

$$
\Omega_{1} \supseteq \Omega_{2} \supseteq \Omega_{3} \supseteq \ldots
$$

Set

$$
\Omega=\bigcap_{j=1}^{\infty} \Omega_{j} .
$$

Prove that the sequence $\left(\mu\left(\Omega_{j}\right)\right)_{j=1}^{\infty}$ is convergent, and that $\mu(\Omega)=\lim _{j \rightarrow \infty} \mu\left(\Omega_{j}\right)$.
(c) Given an example of a measure space (X, μ) and measurable sets $\left(\Omega_{j}\right)_{j=1}^{\infty}$ such that

$$
\Omega_{1} \supseteq \Omega_{2} \supseteq \Omega_{3} \supseteq \ldots
$$

but $\lim _{j \rightarrow \infty} \mu\left(\Omega_{j}\right) \neq \mu\left(\bigcap_{j=1}^{\infty} \Omega_{j}\right)$.
Problem 2: Let (X, \mathcal{A}, μ) be a measure space, and let $f: X \rightarrow \mathbb{R}$ be a measurable real-valued function.
(a) State the definition of a Lebesgue integral of f over X.
(b) Consider the special case of $X=\mathbb{R}$ with \mathcal{A} being the power set on \mathbb{R} and

$$
\mu(\Omega)=\sum_{j \in \Omega \cap \mathbb{N}} 2^{j}
$$

where $\mathbb{N}=\{1,2,3, \ldots\}$ is the set of natural numbers. Is μ finite, σ-finite, or neither?
(c) With (X, \mathcal{A}, μ) as in (b), and with $f(x)=e^{-x}$, evaluate the integral

$$
\int_{\mathbb{R}} f d \mu
$$

Problem 3: No motivation required for parts (a) and (b).
(a) Let $\delta \in \mathcal{S}^{*}(\mathbb{R})$ denote the Dirac δ-function. What is $\hat{\delta}=\mathcal{F} \delta$?
(b) Let τ_{n} denote a shift operator on $\mathcal{S}(\mathbb{R})$ defined via $\left[\tau_{n} \varphi\right](x)=\varphi(x-n)$ and generalize to a shift operator on $\mathcal{S}^{*}(\mathbb{R})$ via $\left\langle\tau_{n} T, \varphi\right\rangle=\left\langle T, \tau_{-n} \varphi\right\rangle$ as usual. Set $T_{N}=\sum_{n=-N}^{N} \tau_{n} \delta$. What is the Fourier transform \hat{T}_{N} ?
(c) Prove that the sequence $\left(T_{N}\right)_{N=1}^{\infty}$ converges in $\mathcal{S}^{*}(\mathbb{R})$.
(d) Prove that the sequence $\left(\hat{T}_{N}\right)_{N=1}^{\infty}$ converges in $\mathcal{S}^{*}(\mathbb{R})$.
$\underline{5 p \text { extra credit: }}$ State the limit point of $\left(\hat{T}_{N}\right)_{N=1}^{\infty}$. No motivation required.

Problem 4: Let r be a real number, and define for $x \in \mathbb{R} \backslash\{0\}$ the functions

$$
f_{r}(x)=\left(1+|x|^{2}\right)^{r}, \quad g_{r}(x)= \begin{cases}1 & \text { when } x=0 \text { and } r>0 \\ 0 & \text { when } x=0 \text { and } r \leq 0 \\ 1-|x|^{r} & \text { when } 0<|x|<1 \\ 0 & \text { when } 1<|x|\end{cases}
$$

The figure below illustrates the definitions:

(a) For which $r \in \mathbb{R}$ is it the case that $f_{r} \in C_{0}(\mathbb{R})$?
(b) For which $r \in \mathbb{R}$ is it the case that $g_{r} \in C_{0}(\mathbb{R})$?
(c) For which $r \in \mathbb{R}$ is it the case that $\hat{f}_{r} \in C_{0}(\mathbb{R})$?
(d) For which $r \in \mathbb{R}$ is it the case that $\hat{g}_{r} \in C_{0}(\mathbb{R})$?
(e) For which $r \in \mathbb{R}$ is it the case that $f_{r} \in \mathcal{S}^{*}(\mathbb{R})$?
(f) For which $r \in \mathbb{R}$ is it the case that $g_{r} \in \mathcal{S}^{*}(\mathbb{R})$?
(g) For which $r \in \mathbb{R}$ is it the case that $\hat{f}_{r} \in \mathcal{S}^{*}(\mathbb{R})$?
(h) For which $r \in \mathbb{R}$ is it the case that $\hat{g}_{r} \in \mathcal{S}^{*}(\mathbb{R})$?
(i) For which $r \in \mathbb{R}$ and $s \geq 0$ is it the case that $\hat{f}_{r} \in H^{s}(\mathbb{R})$?
(j) For which $r \in \mathbb{R}$ and $s \geq 0$ is it the case that $\hat{g}_{r} \in H^{s}(\mathbb{R})$?
(Every correct answer will get full credit regardless of whether a motivation is provided.)
$5 p$ extra credit: Specify how your answers would change if you consider f_{r} and g_{r} as functions on \mathbb{R}^{d} rather than as functions on \mathbb{R}.

