Applied Analysis (APPM 5450): Midterm 3

8.30am – 9.50am, April 18, 2011. Closed books.

Each problem is worth 25 point.

Problem 1: In this problem, X denotes a set, and A denotes a σ -algebra on X.

(a) State the definition of a measure μ on (X, \mathcal{A}) .

(b) Let $(\Omega_j)_{j=1}^{\infty}$ denote a sequence in \mathcal{A} such that $\mu(\Omega_1) < \infty$, and

$$\Omega_1 \supseteq \Omega_2 \supseteq \Omega_3 \supseteq \ldots$$

Set

$$\Omega = \bigcap_{j=1}^{\infty} \Omega_j$$

Prove that the sequence $(\mu(\Omega_j))_{j=1}^{\infty}$ is convergent, and that $\mu(\Omega) = \lim_{j \to \infty} \mu(\Omega_j)$.

(c) Given an example of a measure space (X, μ) and measurable sets $(\Omega_j)_{j=1}^{\infty}$ such that

$$\Omega_1 \supseteq \Omega_2 \supseteq \Omega_3 \supseteq \dots$$

but $\lim_{j \to \infty} \mu(\Omega_j) \neq \mu\left(\bigcap_{j=1}^{\infty} \Omega_j\right).$

Problem 2: Let (X, \mathcal{A}, μ) be a measure space, and let $f : X \to \mathbb{R}$ be a measurable real-valued function.

- (a) State the definition of a Lebesgue integral of f over X.
- (b) Consider the special case of $X = \mathbb{R}$ with \mathcal{A} being the power set on \mathbb{R} and

$$\mu(\Omega) = \sum_{j \in \Omega \cap \mathbb{N}} 2^j,$$

where $\mathbb{N} = \{1, 2, 3, ...\}$ is the set of natural numbers. Is μ finite, σ -finite, or neither?

(c) With (X, \mathcal{A}, μ) as in (b), and with $f(x) = e^{-x}$, evaluate the integral

$$\int_{\mathbb{R}} f \, d\mu.$$

Problem 3: No motivation required for parts (a) and (b).

(a) Let $\delta \in \mathcal{S}^*(\mathbb{R})$ denote the Dirac δ -function. What is $\hat{\delta} = \mathcal{F}\delta$?

(b) Let τ_n denote a shift operator on $\mathcal{S}(\mathbb{R})$ defined via $[\tau_n \varphi](x) = \varphi(x-n)$ and generalize to a shift operator on $\mathcal{S}^*(\mathbb{R})$ via $\langle \tau_n T, \varphi \rangle = \langle T, \tau_{-n} \varphi \rangle$ as usual. Set $T_N = \sum_{n=-N}^N \tau_n \delta$. What is the Fourier transform \hat{T}_N ?

- (c) Prove that the sequence $(T_N)_{N=1}^{\infty}$ converges in $\mathcal{S}^*(\mathbb{R})$.
- (d) Prove that the sequence $(\hat{T}_N)_{N=1}^{\infty}$ converges in $\mathcal{S}^*(\mathbb{R})$.

<u>5p extra credit</u>: State the limit point of $(\hat{T}_N)_{N=1}^{\infty}$. No motivation required.

Problem 4: Let r be a real number, and define for $x \in \mathbb{R} \setminus \{0\}$ the functions

$$f_r(x) = (1+|x|^2)^r, \qquad g_r(x) = \begin{cases} 1 & \text{when } x = 0 \text{ and } r > 0, \\ 0 & \text{when } x = 0 \text{ and } r \le 0, \\ 1-|x|^r & \text{when } 0 < |x| < 1, \\ 0 & \text{when } 1 < |x|. \end{cases}$$

The figure below illustrates the definitions:

- (a) For which $r \in \mathbb{R}$ is it the case that $f_r \in C_0(\mathbb{R})$?
- (b) For which $r \in \mathbb{R}$ is it the case that $g_r \in C_0(\mathbb{R})$?
- (c) For which $r \in \mathbb{R}$ is it the case that $\hat{f}_r \in C_0(\mathbb{R})$?
- (d) For which $r \in \mathbb{R}$ is it the case that $\hat{g}_r \in C_0(\mathbb{R})$?
- (e) For which $r \in \mathbb{R}$ is it the case that $f_r \in \mathcal{S}^*(\mathbb{R})$?
- (f) For which $r \in \mathbb{R}$ is it the case that $g_r \in \mathcal{S}^*(\mathbb{R})$?
- (g) For which $r \in \mathbb{R}$ is it the case that $\hat{f}_r \in \mathcal{S}^*(\mathbb{R})$?
- (h) For which $r \in \mathbb{R}$ is it the case that $\hat{g}_r \in \mathcal{S}^*(\mathbb{R})$?
- (i) For which $r \in \mathbb{R}$ and $s \ge 0$ is it the case that $\hat{f}_r \in H^s(\mathbb{R})$?
- (j) For which $r \in \mathbb{R}$ and $s \ge 0$ is it the case that $\hat{g}_r \in H^s(\mathbb{R})$?

(Every correct answer will get full credit regardless of whether a motivation is provided.)

<u>5p extra credit</u>: Specify how your answers would change if you consider f_r and g_r as functions on \mathbb{R}^d rather than as functions on \mathbb{R} .