Applied Analysis (APPM 5450): Midterm 3 - Solutions

8.30am - 9.50am, April 18, 2011. Closed books.

Problem 1: In this problem, X denotes a set, and \mathcal{A} denotes a σ-algebra on X.
(a) State the definition of a measure μ on (X, \mathcal{A}).
(b) Let $\left(\Omega_{j}\right)_{j=1}^{\infty}$ denote a sequence in \mathcal{A} such that $\mu\left(\Omega_{1}\right)<\infty$, and

$$
\Omega_{1} \supseteq \Omega_{2} \supseteq \Omega_{3} \supseteq \ldots
$$

Set

$$
\Omega=\bigcap_{j=1}^{\infty} \Omega_{j}
$$

Prove that the sequence $\left(\mu\left(\Omega_{j}\right)\right)_{j=1}^{\infty}$ is convergent, and that $\mu(\Omega)=\lim _{j \rightarrow \infty} \mu\left(\Omega_{j}\right)$.
(c) Given an example of a measure space (X, μ) and measurable sets $\left(\Omega_{j}\right)_{j=1}^{\infty}$ such that

$$
\Omega_{1} \supseteq \Omega_{2} \supseteq \Omega_{3} \supseteq \ldots
$$

but $\lim _{j \rightarrow \infty} \mu\left(\Omega_{j}\right) \neq \mu\left(\bigcap_{j=1}^{\infty} \Omega_{j}\right)$.

Solution: We use "ש" to denote disjoint unions.
(b) Set $A_{n}=\Omega_{n} \backslash \Omega_{n+1}$. Then $\Omega_{n}=A_{n} ש \Omega_{n+1}$ and so

$$
\mu\left(\Omega_{n}\right)=\mu\left(A_{n} \mathbb{ש} \Omega_{n+1}\right)=\mu\left(A_{n}\right)+\mu\left(\Omega_{n+1}\right) \geq \mu\left(\Omega_{n+1}\right) .
$$

Since $\left(\mu\left(\Omega_{n}\right)\right)_{n=1}^{\infty}$ is a decreasing sequence, it must have a limit. To compute the limit, we note that

$$
\infty>\mu\left(\Omega_{1}\right)=\mu\left(\Omega ש\left(\bigcup_{m=1}^{\infty} A_{m}\right)\right)=\mu(\Omega)+\sum_{m=1}^{\infty} \mu\left(A_{m}\right) .
$$

It follows that $\sum_{m=1}^{\infty} \mu\left(A_{m}\right)$ is finite, which implies that $\lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} \mu\left(A_{m}\right)=0$. Finally,

$$
\lim _{n \rightarrow \infty} \mu\left(\Omega_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\Omega \uplus\left(\bigcup_{m=n}^{\infty} A_{m}\right)\right)=\lim _{n \rightarrow \infty}\left(\mu(\Omega)+\sum_{m=n}^{\infty} \mu\left(A_{m}\right)\right)=\mu(\Omega) .
$$

(c) Consider $X=\mathbb{R}^{2}$ with standard Lebesgue measure. Set $\Omega_{n}=\left\{x=\left(x_{1}, x_{2}\right):\left|x_{2}\right|<1 / n\right\}$.

Then $\mu\left(\Omega_{n}\right)=\infty$ for all n, but $\Omega=\bigcap_{n=1}^{\infty} \Omega_{n}$ is the x_{1}-axis, which has measure zero.
Note: The different parts are worth:
(a) 5 p
(b) 10 p
(c) 10 p

Problem 2: Let (X, \mathcal{A}, μ) be a measure space, and let $f: X \rightarrow \mathbb{R}$ be a measurable real-valued function.
(a) State the definition of a Lebesgue integral of f over X.
(b) Consider the special case of $X=\mathbb{R}$ with \mathcal{A} being the power set on \mathbb{R} and

$$
\mu(\Omega)=\sum_{j \in \Omega \cap \mathbb{N}} 2^{j}
$$

where $\mathbb{N}=\{1,2,3, \ldots\}$ is the set of natural numbers. Is μ finite, σ-finite, or neither?
(c) With (X, \mathcal{A}, μ) as in (b), and with $f(x)=e^{-x}$, evaluate the integral

$$
\int_{\mathbb{R}} f d \mu
$$

Solution:

(b) We have

$$
\mu(\mathbb{R})=\sum_{j \in \mathbb{R} \cap \mathbb{N}} 2^{j}=\sum_{j \in \mathbb{N}} 2^{j}=\sum_{j=1}^{\infty} 2^{j}=\infty
$$

so the measure is not finite. However, if we set $\Omega_{j}=(j-1 / 2, j+1 / 2]$, then $\left\{\Omega_{j}\right\}_{j \in \mathbb{Z}}$ is a disjoint cover of \mathbb{R}, and $\mu\left(\Omega_{j}\right)$ is finite ${ }^{1}$ for all j so the measure is σ-finite.
(c)

$$
\int_{\mathbb{R}} f d \mu=\sum_{j=1}^{\infty} 2^{j} f(j)=\sum_{j=1}^{\infty} 2^{j} e^{-j}=\sum_{j=1}^{\infty}\left(\frac{2}{e}\right)^{j}=\frac{2 / e}{1-2 / e} .
$$

Note: The answer to (c) does not need to be motivated in any detail deeper than that given above. However, to evaluate the integral directly from the definition, first set $g=f \chi_{\mathbb{N}}$. Then $f=g$ a.e. so $\int f=\int g$. Now set

$$
\varphi_{N}(x)=\sum_{n=1}^{N} e^{-j} \chi_{\{j\}}(x) .
$$

Then φ_{N} are simple functions such that $\varphi_{N} \nearrow g$. Finally

$$
\int \varphi_{N}=\sum_{j=1}^{N} e^{-j} 2^{j} \nearrow \sum_{j=1}^{\infty} e^{-j} 2^{j}=\frac{2 / e}{1-2 / e} .
$$

Note: The different parts are worth:
(a) 9 p
(b) 8 p
(c) $8 p$

[^0]Problem 3: No motivation required for parts (a) and (b).
(a) Let $\delta \in \mathcal{S}^{*}(\mathbb{R})$ denote the Dirac δ-function. What is $\hat{\delta}=\mathcal{F} \delta$?
(b) Let τ_{n} denote a shift operator on $\mathcal{S}(\mathbb{R})$ defined via $\left[\tau_{n} \varphi\right](x)=\varphi(x-n)$ and generalize to a shift operator on $\mathcal{S}^{*}(\mathbb{R})$ via $\left\langle\tau_{n} T, \varphi\right\rangle=\left\langle T, \tau_{-n} \varphi\right\rangle$ as usual. Set $T_{N}=\sum_{n=-N}^{N} \tau_{n} \delta$. What is the Fourier transform \hat{T}_{N} ?
(c) Prove that the sequence $\left(T_{N}\right)_{N=1}^{\infty}$ converges in $\mathcal{S}^{*}(\mathbb{R})$.
(d) Prove that the sequence $\left(\hat{T}_{N}\right)_{N=1}^{\infty}$ converges in $\mathcal{S}^{*}(\mathbb{R})$.

5p extra credit: State the limit point of $\left(\hat{T}_{N}\right)_{N=1}^{\infty}$. No motivation required.

Solution:

(a) $\langle\hat{\delta}, \varphi\rangle=\langle\delta, \hat{\varphi}\rangle=\hat{\varphi}(0)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \varphi(x) d x$ so $\hat{\delta}=\frac{1}{\sqrt{2 \pi}}$.
(b) Recall that $\left[\mathcal{F}\left(\tau_{n} T\right)\right](t)=e^{-i n t} \hat{T}(t)$ so $\hat{T}_{N}=\sum_{n=-N}^{N} e^{-i n t} \frac{1}{\sqrt{2 \pi}}=\frac{1}{\sqrt{2 \pi}} \frac{e^{i(N+1) t}-e^{-i N t}}{e^{i t}-1}=\frac{1}{\sqrt{2 \pi}} \frac{e^{i(N+1 / 2) t}-e^{-i(N+1 / 2) t}}{e^{i t / 2}-e^{-i t / 2}}=\frac{1}{\sqrt{2 \pi}} \frac{\sin ((N+1 / 2) t)}{\sin (t / 2)}$.
(c) Fix $\varphi \in \mathcal{S}(\mathbb{R})$. We need to prove that the sequence $\left(T_{N}(\varphi)\right)_{N=1}^{\infty}$ converges. Observe that

$$
|\varphi(x)| \leq \frac{1}{1+x^{2}} \sup _{x}\left(\left(1+x^{2}\right)|\varphi(x)|\right)=\frac{1}{1+x^{2}}\|\varphi\|_{0,2}
$$

Now

$$
T_{N}(\varphi)=\sum_{n=-N}^{N}\left[\tau_{n} \delta\right](\varphi)=\sum_{n=-N}^{N} \varphi(n) .
$$

The sum is convergent since $|\varphi(n)| \leq C /\left(1+n^{2}\right)$ and $\sum_{n=-N}^{N} 1 /\left(1+n^{2}\right)<\infty$.
(d) Since \mathcal{F} is a continuous map from \mathcal{S}^{*} to \mathcal{S}^{*}, the fact that $\left(T_{N}\right)$ converges immediately implies that $\left(\mathcal{F} T_{N}\right)$ converges.

Alternative solution to (d):

$$
\hat{T}_{N}(\varphi)=T_{N}(\hat{\varphi})=\sum_{n=-N}^{N} \hat{\varphi}(n),
$$

and then convergence is proved as in (c) since $\hat{\varphi} \in \mathcal{S}$.
Note: The different parts are worth:
(a) 6 p
(b) 6 p
(c) 7 p
(d) 6 p

Comments on the extra credit problem: The distribution T is quite well-known in signal processing and is often called a Dirac comb. Its Fourier transform is also a Dirac comb:

$$
\begin{equation*}
\hat{T}(t)=\sqrt{2 \pi} \sum_{n=-\infty}^{\infty} \delta(t-2 \pi n) . \tag{1}
\end{equation*}
$$

To see this informally (and this is not a rigorous argument!) note that T is a periodic function with period 1, so we can write $T(x)=\sum_{n=-\infty}^{\infty} \alpha_{n} e^{i 2 \pi n x}$. Since $\left\{e^{i 2 \pi n x}\right\}_{n \in \mathbb{Z}}$ is an ON-basis on $L^{2}(-1 / 2,1 / 2)$ we find $\alpha_{n}=\int_{-1 / 2}^{1 / 2} T(x) e^{-i 2 \pi n x} d x=1$, and so

$$
T(x)=\sum_{n=-\infty}^{\infty} e^{i 2 \pi n x}
$$

Take the Fourier transform "under the sum" to obtain (1). (Note $\left[\mathcal{F} e^{i 2 \pi n x}\right](t)=\sqrt{2 \pi} \delta(t-2 \pi n)$.)
From (1) we obtain the important Poisson summation formula,

$$
\sum_{n=-\infty}^{\infty} \varphi(n)=\langle T, \varphi\rangle=\left\langle\mathcal{F}^{*} \mathcal{F} T, \varphi\right\rangle=\langle\hat{T}, \check{\varphi}\rangle=\sqrt{2 \pi} \sum_{n=-\infty}^{\infty} \check{\varphi}(2 \pi n)=\sqrt{2 \pi} \sum_{n=-\infty}^{\infty} \hat{\varphi}(2 \pi n) .
$$

There is much more on this important and interesting topic in Section 11.11 of the text book.
To illustrate the limit graphically, we plot \hat{T}_{N} for $N=5$ and $N=10$ below:

Problem 4: Let r be a real number, and define for $x \in \mathbb{R} \backslash\{0\}$ the functions

$$
f_{r}(x)=\left(1+|x|^{2}\right)^{r}, \quad g_{r}(x)=1-|x|^{r} .
$$

Furthermore, set

$$
f_{r}(0)=1, \quad g_{r}(0)= \begin{cases}1 & \text { when } r>0, \\ 0 & \text { when } r \leq 0 .\end{cases}
$$

The figure below illustrates the definitions:

(a) For which $r \in \mathbb{R}$ is it the case that $f_{r} \in C_{0}(\mathbb{R})$?
(b) For which $r \in \mathbb{R}$ is it the case that $g_{r} \in C_{0}(\mathbb{R})$?
(c) For which $r \in \mathbb{R}$ is it the case that $\hat{f}_{r} \in C_{0}(\mathbb{R})$?
(d) For which $r \in \mathbb{R}$ is it the case that $\hat{g}_{r} \in C_{0}(\mathbb{R})$?
(e) For which $r \in \mathbb{R}$ is it the case that $f_{r} \in \mathcal{S}^{*}(\mathbb{R})$?
(f) For which $r \in \mathbb{R}$ is it the case that $g_{r} \in \mathcal{S}^{*}(\mathbb{R})$?
(g) For which $r \in \mathbb{R}$ is it the case that $\hat{f}_{r} \in \mathcal{S}^{*}(\mathbb{R})$?
(h) For which $r \in \mathbb{R}$ is it the case that $\hat{g}_{r} \in \mathcal{S}^{*}(\mathbb{R})$?
(i) For which $r \in \mathbb{R}$ and $s \geq 0$ is it the case that $\hat{f}_{r} \in H^{s}(\mathbb{R})$?
(j) For which $r \in \mathbb{R}$ and $s \geq 0$ is it the case that $\hat{g}_{r} \in H^{s}(\mathbb{R})$?
(Every correct answer will get full credit regardless of whether a motivation is provided.)
$5 p$ extra credit: Specify how your answers would change if you consider f_{r} and g_{r} as functions on \mathbb{R}^{d} rather than as functions on \mathbb{R}.

Solution to Problem 4:

(a) $f_{r} \in C_{0}$ if $r<0$.
f_{r} is continuous for all r, and decays iff $r<0$.
(b) $g_{r} \in C_{0}$ if $r \geq 0$.
g_{r} decays for all r (super-fast!), and is continuous iff $r \geq 0$.
(c) $\hat{f}_{r} \in C_{0}$ if $r<-1 / 2$.

By the Riemann-Lebesgue lemma, $\hat{f}_{r} \in C_{0}$ if $f_{r} \in L^{1}$. Now $\int f_{r}<\infty$ iff $2 r<-1$.
(d) $\hat{g}_{r} \in C_{0}$ if $r>-1$.

By the Riemann-Lebesgue lemma, $\hat{g}_{r} \in C_{0}$ if $g_{r} \in L^{1}$. Now $\int g_{r}<\infty$ iff $r>-1$.
(e) For all r.

Note that for any r, we have $\left(1+x^{2}\right)^{-r-1} f_{r}=\left(1+x^{2}\right)^{-1} \in L^{1}$ so f_{r} is tempered.
(f) For $r>-1$.

Note that $\int g_{r}=\infty$ if $r \leq-1$. Conversely, if $r>-1$, then $g_{r} \in L^{1} \subset S^{*}$.
(Note that decay factors do not help here; local integrability is the issue.)
(g) For all r.

Note that $\mathcal{F}: \mathcal{S}^{*} \rightarrow \mathcal{S}^{*}$ is an isomorphism so $\hat{f}_{r} \in \mathcal{S}^{*}$ iff $f_{r} \in \mathcal{S}^{*}$. Therefore, the answer must be identical to the answer in (e).
(h) For all $r>-1$.

Note that $\mathcal{F}: \mathcal{S}^{*} \rightarrow \mathcal{S}^{*}$ is an isomorphism so $\hat{g}_{r} \in \mathcal{S}^{*}$ iff $g_{r} \in \mathcal{S}^{*}$. Therefore, the answer must be identical to the answer in (f).
(i)

$$
\hat{f}_{r} \in H^{s} \text { iff } 2 s+4 r<-1(\text { and } s \geq 0)
$$

Note that $\hat{f}_{r} \in H^{s}$ iff $\left(1+x^{2}\right)^{s}\left|f_{r}\right|^{2} \in L^{1}$ (by definition). Now $\left(1+x^{2}\right)^{s}\left|f_{r}(x)\right|^{2}=\left(1+x^{2}\right)^{s+2 r}$ which is integrable iff $2 s+4 r<-1$.
(j) $\hat{g}_{r} \in H^{s}$ iff $r>-1 / 2($ and $s \geq 0)$.

Note that $\hat{g}_{r} \in H^{s}$ iff $\left(1+x^{2}\right)^{s}\left|g_{r}\right|^{2} \in L^{1}$ (by definition). Since g_{r} has compact support, the decay factor is in this case irrelevant, so all that matters is whether $\left|g_{r}\right|^{2} \in L^{1}$. This is true iff $2 r>-1$.

Extra credit problems: The answers that change are the ones that depend on integrability. We find:
(c) $r<-d / 2$.
(d) $r>-d$.
(f) $r>-d$.
(h) $r>-d$.
(i) $2 s+4 r<-d$
(j) $r>-d / 2$

Grading guide: Each correct sub-problem is worth 2.5p (with the total rounded up to the nearest integer).

[^0]: ${ }^{1}$ To be precise, $\mu\left(\Omega_{j}\right)=0$ if $j \leq 0$ and $\mu\left(\Omega_{j}\right)=2^{j}$ if $j \in \mathbb{N}$.

