APPM5450 - Applied Analysis: Final exam

> 7:30 - 9:50, May 9, 2013. Closed books.

Please motivate your answers unless the problem explicitly states otherwise.
Problem 1: (12p) No motivation required for these problems.
(a) (3p) Let $n \in \mathbb{Z}$ and define $f_{n} \in \mathcal{S}^{*}(\mathbb{R})$ via $f_{n}(x)=\sin (n x)$. What is \hat{f}_{n} ?
(b) (3p) State for which $p \in[1, \infty]$, if any, the unit ball in $L^{p}(\mathbb{R})$ is weakly compact.
(c) (3p) Set $H=L^{2}(\mathbb{R})$ and define $T \in \mathcal{B}(H)$ via $[T u](x)=u(-x)$. What is $\sigma(T)$?
(d) (3p) Let H be a Hilbert space. State the definition of a unitary operator on H.

Problem 2: (13p) Let H be a Hilbert space, and let A denote a bounded linear operator on H.
(a) (3p) State the definition of the resolvent set $\rho(A)$ of A.
(b) (10p) Prove that the resolvent set $\rho(A)$ is an open subset of \mathbb{C}.

Problem 3: (16p) Define for $\alpha, \beta \in(0, \infty)$ and for $n=1,2,3, \ldots$ functionals $A_{n}, B_{n} \in \mathcal{S}^{*}(\mathbb{R})$ via

$$
A_{n}(\varphi)=\sum_{j=1}^{n} \alpha^{j} \varphi(j), \quad \text { and } \quad B_{n}(\varphi)=\sum_{j=1}^{n} j^{\beta} \varphi(j) .
$$

(a) (8p) For which $\alpha \in(0, \infty)$ does the sequence $\left(A_{n}\right)_{n=1}^{\infty}$ converge in $\mathcal{S}^{*}(\mathbb{R})$?
(b) (8 p) For which $\beta \in(0, \infty)$ does the sequence $\left(B_{n}\right)_{n=1}^{\infty}$ converge in $\mathcal{S}^{*}(\mathbb{R})$?

Problem 4: (23p) Let \mathbb{T} denote the unit circle as usual, and define a function $f \in L^{2}(\mathbb{T})$ via $f(x)=x$, where \mathbb{T} is parameterized using $x \in[-\pi, \pi)$.
(a) (5p) What are the Fourier coefficients of f ?
(b) (5p) For which $s \in[0, \infty)$ is it the case that $f \in H^{s}(\mathbb{T})$?
(c) (5p) Use your result in (a) to prove that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.
(d) (5p) Let g denote the real-valued function obtained via periodic continuation of f to a 2π periodic function on \mathbb{R} (see figure below). Prove that $g \in \mathcal{S}^{*}(\mathbb{R})$.

(e) (3p) What is the Fourier transform of the function $g \in \mathcal{S}^{*}(\mathbb{R})$ defined in (d)? No motivation required for this part. (Hint: Problem 1(a) may be useful.)

Problem 5: $(18 p)$ Set $I=(0,1)$ and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of Lebesgue integrable real valued functions on the interval $I=(0,1)$ such that for every $x \in I$,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=x
$$

Consider for $n=1,2,3, \ldots$ the three sequences

$$
\begin{aligned}
a_{n} & =\int_{0}^{1} f_{n}(x) d x \\
b_{n} & =\int_{0}^{1} \frac{f_{n}(x)}{1+\left(f_{n}(x)\right)^{2}} d x \\
c_{n} & =\int_{0}^{1}\left|\sum_{j=1}^{n} f_{j}(x)\right| d x
\end{aligned}
$$

Which of the sequences must necessarily converge as $n \rightarrow \infty$? Is it for any of the convergent sequences possible to say what the limit is? Motivate your answers.

Problem 6: $(18 p)$ Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions in $L^{2}(\mathbb{R})$ that converges pointwise to a function f. In other words,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \quad \text { for all } x \in \mathbb{R}
$$

Suppose further that all f_{n} satisfy

$$
\left|f_{n}(x)\right| \leq 2|f(x)|, \quad \text { for all } x \in \mathbb{R}
$$

For each of the three sets of conditions on f given below, specify for which $r \in[1, \infty)$ it is necessarily the case that

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{r}(\mathbb{R})}=0
$$

(a) $(6 \mathrm{p}) f \in L^{2}(\mathbb{R})$, and for $|x| \geq 2$, it is the case that $f(x)=0$.
(b) $(6 \mathrm{p}) f \in L^{2}(\mathbb{R})$ and $|f(x)| \leq 2$ for all $x \in \mathbb{R}$.
(c) $(6 \mathrm{p}) f \in L^{2}(\mathbb{R})$ and $f \in L^{3}(\mathbb{R})$.

