
APPM5450 — Applied Analysis: Final exam — Solutions
7:30 – 9:50, May 9, 2013. Closed books.

Problem 1: (12p) No motivation required for these problems.

(a) (3p) Let n ∈ Z and define fn ∈ S∗(R) via fn(x) = sin(nx). What is f̂n?

(b) (3p) State for which p ∈ [1,∞], if any, the unit ball in Lp(R) is weakly compact.

(c) (3p) Set H = L2(R) and define T ∈ B(H) via [Tu](x) = u(−x). What is σ(T )?

(d) (3p) Let H be a Hilbert space. State the definition of a unitary operator on H.

Solution

(a) Observe that

• sin(nx) = (1/2i)(einx − e−inx),
• Fδ = β (where β = 1/

√
2π),

• [F(einxg)](t) = ĝ(t− n).

Combining, we find

f̂n(t) = (1/2i)
(
β δ(t− n)− β δ(t+ n)

)
=

i

2
√
2π

δ(t+ n)− i

2
√
2π

δ(t− n).

(b) This is Banach-Alaoglu, which applies in reflexive spaces. Consequently, the unit ball is weakly
compact when p ∈ (1,∞).

(c) Observe that T is both unitary and self-adjoint. This means that the spectrum is contained in
the intersection of the real line and the unit circle, which is to say σ(T ) ⊆ {−1, 1}. It is then easily
verified that any even function is a eigenvector associated with λ = 1 and any odd function is an
eigenvector associated with λ = −1. So σ(T ) = σp(T ) = {−1, 1}.

(d) A unitary operator is a bijective operator that preserves the inner product.

Problem 2: (13p) Let H be a Hilbert space, and let A denote a bounded linear operator on H.

(a) (3p) State the definition of the resolvent set ρ(A) of A.

(b) (10p) Prove that the resolvent set ρ(A) is an open subset of C.

Solution

(a) ρ(A) is the set of complex numbers λ such that A− λ I is one-to-one and onto.

(b) Fix λ ∈ ρ(A). Then A − λI is continuously invertible by the open mapping theorem. Set
ε = 1/||(A− λI)−1|| and observe that ε > 0. For any µ ∈ Bε(λ), we find

(1) A− µ I = A− λI − (µ− λ) I = (A− λI)
[
I − (µ− λ) (A− λI)−1

]
.

Now observe that

||(µ− λ) (A− λI)−1|| ≤ |µ− λ| ||(A− λ I)−1|| < ε ||(A− λI)−1|| = 1.

Consequently, the Neumann series argument shows that the expression in brackets in (1) is invertible.



Problem 3: (16p) Define for α, β ∈ (0,∞) and for n = 1, 2, 3, . . . functionals An, Bn ∈ S∗(R) via

An(φ) =

n∑
j=1

αj φ(j), and Bn(φ) =

n∑
j=1

jβ φ(j).

(a) (8p) For which α ∈ (0,∞) does the sequence (An)
∞
n=1 converge in S∗(R)?

(b) (8p) For which β ∈ (0,∞) does the sequence (Bn)
∞
n=1 converge in S∗(R)?

Solution

Answer: For α ∈ (0, 1] and for any β ∈ (0,∞).

To prove that, e.g., (Bn) converges, we need to show that for every φ ∈ S, the sequence
(
Bn(φ)

)∞
n=1

converges to some number B(φ), where B ∈ S∗.

To prove that (An) converges, we will show that there exists a φ ∈ S, such that the sequence(
Bn(φ)

)∞
n=1

diverges..

• Case 1: β ∈ (0,∞)

Pick k such that k > β + 1. Then

|Bn(φ)| ≤
∞∑
j=1

jβ|φ(j)| ≤
∞∑
j=1

jβ
||φ||0,k

(1 + j2)k/2
∼ ||φ||0,k

∞∑
j=1

jβ−k < ∞.

• Case 2: α ∈ (0, 1]

The proof is entirely analogous to Case 1 since the “weights” are bounded:

|An(φ)| ≤
∞∑
j=1

|φ(j)| ≤
∞∑
j=1

||φ||0,2
1 + j2

≤ C ||φ||0,2.

• Case 3: α ∈ (1,∞)

Note that the weights grow exponentially in this case, which means that we cannot dominate
the sum using a polynomial decay factor. We instead seek a Schwartz function φ such that
αjφ(j) → ∞. To this end, pick γ ∈ (1, α), and set

φ(x) = γ−x2/
√
1+x2

.

Then φ ∈ S(R), but

An(φ) =
n∑

j=1

αj φ(j) ∼
n∑

j=1

αjγ−j =
n∑

j=1

(α/γ)j → ∞.



Problem 4: (23p) Let T denote the unit circle as usual, and define a function f ∈ L2(T) via
f(x) = x, where T is parameterized using x ∈ [−π, π).

(a) (5p) What are the Fourier coefficients of f?

(b) (5p) For which s ∈ [0,∞) is it the case that f ∈ Hs(T)?

(c) (5p) Use your result in (a) to prove that

∞∑
k=1

1

k2
=

π2

6
.

(d) (5p) Let g denote the real-valued function obtained via periodic continuation of f to a 2π
periodic function on R. Prove that g ∈ S∗(R).

(e) (3p) What is the Fourier transform of the function g ∈ S∗(R) defined in (d)?
No motivation required for this part. (Hint: Problem 1(a) may be useful.)

Solution

(a) Set β = 1/
√
2π. Then αn = β

∫ π

−π
e−inx x dx = βi

∫ π

−π
sin(nx)x dx = · · · = 2βiπ(−1)n

n
.

(b) We find ||f ||2Hs =
∑

(1 + |n|2)s|αn|2 =
∑

(1 + |n|2)s 4β
2π2

n2
∼

∑
n2s n−2.

The sum is finite iff 2s− 2 < −1, which is to say s < 1/2.

(c) Parseval’s theorem states that ||f ||2L2 =
∑

|αn|2. Now
∞∑

n=−∞
|αn|2 = 2

∞∑
n=1

4β2π2

n2
= 4π

∞∑
n=1

1

n2
,

||f ||2L2 =

∫ π

−π
x2 dx = 2

∫ π

0
x2 dx = (2/3)π3.

(d) For a given φ ∈ S, we can bound Tf as follows:

|Tf (φ)| =
∣∣∣∣∫ ∞

−∞
f(x)φ(x) dx

∣∣∣∣ ≤ ∫ ∞

−∞
|f(x)| ||φ||0,2

1 + x2
dx ≤

∫ ∞

−∞
π
||φ||0,2
1 + x2

dx = π2||φ||0,2.

(e) We have f(x) =

∞∑
n=−infty

αnβ einx. Since [Feinx](t) = β δ(t− n), we get

f̂(t) =
∞∑

n=−∞
αnβ

2δ(t− n) =
∞∑

n=−∞

2βiπ(−1)n

n
β2δ(t− n) =

∞∑
n=−∞

i(−1)n

n
√
2π

δ(t− n).

We treated the sum in a cavalier manner, but we only needed the answer!

Note: The Fourier sum simplifies as f(x) =
∑∞

n=1
2(−1)n+1

n sin(nx). The first 20 terms look like:
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Problem 5: (18p) Set I = (0, 1) and let (fn)
∞
n=1 be a sequence of Lebesgue integrable real valued

functions on the interval I = (0, 1) such that for every x ∈ I,

lim
n→∞

fn(x) = x.

Consider for n = 1, 2, 3, . . . the three sequences

an =

∫ 1

0
fn(x) dx

bn =

∫ 1

0

fn(x)

1 + (fn(x))2
dx

cn =

∫ 1

0

∣∣∣ n∑
j=1

fj(x)
∣∣∣ dx.

Which of the sequences must necessarily converge as n → ∞? Is it for any of the convergent
sequences possible to say what the limit is? Motivate your answers.

Solution

The sequence an: This may or may not converge.
If say fn(x) = x for all x, then an → 1/2.
If on the other hand fn = n2 χ(0, 1/n) + xχ(1/n, 1), then an → ∞.

The sequence bn: The absolute value of the integrand is bounded by g(x) = 1. Since
∫ 1
0 g dx = 1 is

finite, Lebesgue dominated convergence applies and we find that

lim
n→∞

bn = lim
n→∞

∫ 1

0

fn(x)

1 + (fn(x))2
dx =

∫ 1

0
lim
n→∞

fn(x)

1 + (fn(x))2
dx =

∫ 1

0

x

1 + x2
dx

=

[
1

2
log(1 + x2)

]1
0

=
1

2

(
log(2)− log(1)

)
= log(2)/2.

The sequence cn: Since the integrand is non-negative, Fatou’s lemma applies:

lim inf
n→∞

cn = lim inf
n→∞

∫ 1

0

∣∣∣ n∑
j=1

fj(x)
∣∣∣ dx ≥

∫ 1

0
lim inf
n→∞

∣∣∣ n∑
j=1

fj(x)
∣∣∣ dx.

For any x, we have

n∑
j=1

fj(x) → ∞, so lim inf
n→∞

∣∣∣ n∑
j=1

fj(x)
∣∣∣ = ∞, and consequently cn → ∞.



Problem 6: (18p) Let (fn)
∞
n=1 be a sequence of functions in L2(R) that converges pointwise to a

function f . In other words,

lim
n→∞

fn(x) = f(x), for all x ∈ R.

Suppose further that all fn satisfy

|fn(x)| ≤ 2|f(x)|, for all x ∈ R.
For each of the three sets of conditions on f given below, specify for which r ∈ [1,∞) it is necessarily
the case that

lim
n→∞

||f − fn||Lr(R) = 0.

(a) (6p) f ∈ L2(R), and for |x| ≥ 2, it is the case that f(x) = 0.

(b) (6p) f ∈ L2(R) and |f(x)| ≤ 2 for all x ∈ R.

(c) (6p) f ∈ L2(R) and f ∈ L3(R).

Solution

Answers: (a) r ∈ [1, 2]. (b) r ∈ [2, ∞). (c) r ∈ [2, 3].

We need to prove the claim when it is true, and provide counter-examples when it is not. The basic
question we need to resolve is when

(2) lim
n→∞

∫ ∞

−∞
|f(x)− fn(x)|r dx = 0.

The integrand in (2) converges to zero pointwise, and we want to bring the LDCT to bear. To this
end, we construct a dominator h via

|f(x)− fn(x)|r ≤
(
|f(x)|+ |fn(x)|

)r ≤ (
|f(x)|+ 2 |f(x)|

)r
= 3r |f(x)|r =: h(x).

We will analyze each of the three assumptions to see when
∫
h < ∞.

(a) Suppose r ∈ [1, 2]. Then h(x) = 3r |f(x)|r ≤ 3r max(1, |f(x)|2). Since f ∈ L2, and since in this
case, h has compact support, we find

∫
h < ∞.

Suppose r > 2. When |f(x)| > 1, we have |f(x)|r > |f(x)|2, so h does not necessarily have finite
integral and the LDCT does not apply. We look for a counter-example. Pick a real number α such
that −1

2 < α < −1
r , and set f(x) = xα χ(0, 1). Then f ∈ L2. Set fn = (1 − 1/n) f . Then fn → f

pointwise, but ||f − fn||rr = ||(1/n)f ||rr =
∫ 1
0 n−r xαr dx = ∞.

(b) Suppose r ∈ [2,∞). Then h(x) = 3r |f(x)|r ≤ 6r |f(x)/2|r ≤ 6r|f(x)/2|2, since |f(x)/2| ≤ 1 and
r ≥ 2. We find

∫
h ≤ 6r(1/4)||f ||22 < ∞, so LDCT applies.

Suppose r ∈ [1, 2). In this case, the LDCT does not apply, and we look for a counter-example.
Pick a real number α such that −1

r < α < −1
2 , and set f(x) = xα χ[1,∞). Then f ∈ L2. Set

fn = (1− 1/n) f . Then fn → f pointwise, but ||f − fn||rr = ||(1/n)f ||rr =
∫∞
1 n−r xαr dx = ∞.

(c) Suppose r ∈ [2, 3]. Then by interpolation (see Homework 14 – Problem 12.15), f ∈ Lr. It
follows that

∫
h < ∞, and so the LDCT applies.

Suppose r < 2. In this case, construct a counter-example as in part (b) of a function f that does
not decay fast enough to belong to Lr.

Suppose r > 3. In this case, construct a counter-example as in part (a) of a function f that has a
sufficiently strong singularity that it does not belong to Lr.


