Problem 1: (12p) No motivation required for these problems.

- (a) (3p) Let $n \in \mathbb{Z}$ and define $f_n \in \mathcal{S}^*(\mathbb{R})$ via $f_n(x) = \sin(nx)$. What is \hat{f}_n ?
- (b) (3p) State for which $p \in [1, \infty]$, if any, the unit ball in $L^p(\mathbb{R})$ is weakly compact.
- (c) (3p) Set $H = L^2(\mathbb{R})$ and define $T \in \mathcal{B}(H)$ via [Tu](x) = u(-x). What is $\sigma(T)$?
- (d) (3p) Let H be a Hilbert space. State the definition of a *unitary* operator on H.

_____ Solution _

(a) Observe that

- $\sin(nx) = (1/2i)(e^{inx} e^{-inx}),$
- $\mathcal{F}\delta = \beta$ (where $\beta = 1/\sqrt{2\pi}$),
- $[\mathcal{F}(e^{inx}g)](t) = \hat{g}(t-n).$

Combining, we find

$$\hat{f}_n(t) = (1/2i) \left(\beta \,\delta(t-n) - \beta \,\delta(t+n)\right) = \frac{i}{2\sqrt{2\pi}} \,\delta(t+n) - \frac{i}{2\sqrt{2\pi}} \,\delta(t-n).$$

(b) This is Banach-Alaoglu, which applies in reflexive spaces. Consequently, the unit ball is weakly compact when $p \in (1, \infty)$.

(c) Observe that T is both unitary and self-adjoint. This means that the spectrum is contained in the intersection of the real line and the unit circle, which is to say $\sigma(T) \subseteq \{-1, 1\}$. It is then easily verified that any even function is a eigenvector associated with $\lambda = 1$ and any odd function is an eigenvector associated with $\lambda = -1$. So $\sigma(T) = \sigma_p(T) = \{-1, 1\}$.

(d) A unitary operator is a bijective operator that preserves the inner product.

Problem 2: (13p) Let H be a Hilbert space, and let A denote a bounded linear operator on H.

- (a) (3p) State the definition of the resolvent set $\rho(A)$ of A.
- (b) (10p) Prove that the resolvent set $\rho(A)$ is an open subset of \mathbb{C} .

______ Solution ______

(a) $\rho(A)$ is the set of complex numbers λ such that $A - \lambda I$ is one-to-one and onto.

(b) Fix $\lambda \in \rho(A)$. Then $A - \lambda I$ is continuously invertible by the open mapping theorem. Set $\varepsilon = 1/||(A - \lambda I)^{-1}||$ and observe that $\varepsilon > 0$. For any $\mu \in B_{\varepsilon}(\lambda)$, we find

(1)
$$A - \mu I = A - \lambda I - (\mu - \lambda) I = (A - \lambda I) \left[I - (\mu - \lambda) (A - \lambda I)^{-1} \right].$$

Now observe that

$$||(\mu - \lambda) (A - \lambda I)^{-1}|| \le |\mu - \lambda| ||(A - \lambda I)^{-1}|| < \varepsilon ||(A - \lambda I)^{-1}|| = 1.$$

Consequently, the Neumann series argument shows that the expression in brackets in (1) is invertible.

Problem 3: (16p) Define for $\alpha, \beta \in (0, \infty)$ and for n = 1, 2, 3, ... functionals $A_n, B_n \in \mathcal{S}^*(\mathbb{R})$ via

$$A_n(\varphi) = \sum_{j=1}^n \alpha^j \varphi(j), \quad \text{and} \quad B_n(\varphi) = \sum_{j=1}^n j^\beta \varphi(j).$$

- (a) (8p) For which $\alpha \in (0, \infty)$ does the sequence $(A_n)_{n=1}^{\infty}$ converge in $\mathcal{S}^*(\mathbb{R})$?
- (b) (8p) For which $\beta \in (0, \infty)$ does the sequence $(B_n)_{n=1}^{\infty}$ converge in $\mathcal{S}^*(\mathbb{R})$?

____ Solution ____

Answer: For $\alpha \in (0, 1]$ and for any $\beta \in (0, \infty)$.

To prove that, e.g., (B_n) converges, we need to show that for every $\varphi \in S$, the sequence $(B_n(\varphi))_{n=1}^{\infty}$ converges to some number $B(\varphi)$, where $B \in S^*$.

To prove that (A_n) converges, we will show that there exists a $\varphi \in S$, such that the sequence $(B_n(\varphi))_{n=1}^{\infty}$ diverges.

• Case 1: $\beta \in (0,\infty)$

Pick k such that $k > \beta + 1$. Then

$$|B_n(\varphi)| \le \sum_{j=1}^{\infty} j^{\beta} |\varphi(j)| \le \sum_{j=1}^{\infty} j^{\beta} \frac{||\varphi||_{0,k}}{(1+j^2)^{k/2}} \sim ||\varphi||_{0,k} \sum_{j=1}^{\infty} j^{\beta-k} < \infty.$$

• Case 2: $\alpha \in (0, 1]$

The proof is entirely analogous to Case 1 since the "weights" are bounded:

$$|A_n(\varphi)| \le \sum_{j=1}^{\infty} |\varphi(j)| \le \sum_{j=1}^{\infty} \frac{||\varphi||_{0,2}}{1+j^2} \le C \, ||\varphi||_{0,2}.$$

• Case 3: $\alpha \in (1, \infty)$

Note that the weights grow exponentially in this case, which means that we cannot dominate the sum using a polynomial decay factor. We instead seek a Schwartz function φ such that $\alpha^j \varphi(j) \to \infty$. To this end, pick $\gamma \in (1, \alpha)$, and set

$$\varphi(x) = \gamma^{-x^2/\sqrt{1+x^2}}.$$

Then $\varphi \in \mathcal{S}(\mathbb{R})$, but

$$A_n(\varphi) = \sum_{j=1}^n \alpha^j \,\varphi(j) \sim \sum_{j=1}^n \alpha^j \gamma^{-j} = \sum_{j=1}^n (\alpha/\gamma)^j \to \infty.$$

Problem 4: (23p) Let \mathbb{T} denote the unit circle as usual, and define a function $f \in L^2(\mathbb{T})$ via f(x) = x, where \mathbb{T} is parameterized using $x \in [-\pi, \pi)$.

- (a) (5p) What are the Fourier coefficients of f?
- (b) (5p) For which $s \in [0, \infty)$ is it the case that $f \in H^s(\mathbb{T})$?

(c) (5p) Use your result in (a) to prove that
$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$
.

- (d) (5p) Let g denote the real-valued function obtained via periodic continuation of f to a 2π periodic function on \mathbb{R} . Prove that $g \in \mathcal{S}^*(\mathbb{R})$.
- (e) (3p) What is the Fourier transform of the function $g \in \mathcal{S}^*(\mathbb{R})$ defined in (d)? No motivation required for this part. (Hint: Problem 1(a) may be useful.)

(a) Set
$$\beta = 1/\sqrt{2\pi}$$
. Then $\alpha_n = \beta \int_{-\pi}^{\pi} e^{-inx} x \, dx = \beta i \int_{-\pi}^{\pi} \sin(nx) x \, dx = \dots = \frac{2\beta i \pi (-1)^n}{n}$.
(b) We find $||f||_{H^s}^2 = \sum (1+|n|^2)^s |\alpha_n|^2 = \sum (1+|n|^2)^s \frac{4\beta^2 \pi^2}{n^2} \sim \sum n^{2s} n^{-2}$.

The sum is finite iff 2s - 2 < -1, which is to say s < 1/2.

(c) Parseval's theorem states that $||f||_{L^2}^2 = \sum |\alpha_n|^2$. Now $\sum_{\alpha} \frac{1}{2} \sum_{\alpha \in \mathbb{Z}} \frac{|\alpha_n|^2}{2} \sum_{\alpha} \frac{|\alpha_n|^2}{2} \sum_{\alpha \in \mathbb{Z}} \frac{|\alpha_n|^2}{2$

$$\sum_{n=-\infty} |\alpha_n|^2 = 2 \sum_{n=1}^{\infty} \frac{4\beta^2 \pi^2}{n^2} = 4\pi \sum_{n=1}^{\infty} \frac{1}{n^2},$$
$$||f||_{L^2}^2 = \int_{-\pi}^{\pi} x^2 \, dx = 2 \int_0^{\pi} x^2 \, dx = (2/3)\pi^3$$

(d) For a given $\varphi \in \mathcal{S}$, we can bound T_f as follows:

$$|T_f(\varphi)| = \left| \int_{-\infty}^{\infty} f(x) \,\varphi(x) \, dx \right| \le \int_{-\infty}^{\infty} |f(x)| \, \frac{||\varphi||_{0,2}}{1+x^2} \, dx \le \int_{-\infty}^{\infty} \pi \, \frac{||\varphi||_{0,2}}{1+x^2} \, dx = \pi^2 ||\varphi||_{0,2}.$$

(e) We have $f(x) = \sum_{n=-infty}^{\infty} \alpha_n \beta e^{inx}$. Since $[\mathcal{F}e^{inx}](t) = \beta \delta(t-n)$, we get

$$\hat{f}(t) = \sum_{n=-\infty}^{\infty} \alpha_n \beta^2 \delta(t-n) = \sum_{n=-\infty}^{\infty} \frac{2\beta i \pi (-1)^n}{n} \beta^2 \delta(t-n) = \sum_{n=-\infty}^{\infty} \frac{i(-1)^n}{n\sqrt{2\pi}} \delta(t-n).$$

We treated the sum in a cavalier manner, but we only needed the answer!

Note: The Fourier sum simplifies as $f(x) = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin(nx)$. The first 20 terms look like:

Problem 5: (18p) Set I = (0, 1) and let $(f_n)_{n=1}^{\infty}$ be a sequence of Lebesgue integrable real valued functions on the interval I = (0, 1) such that for every $x \in I$,

$$\lim_{n \to \infty} f_n(x) = x.$$

Consider for $n = 1, 2, 3, \ldots$ the three sequences

$$a_n = \int_0^1 f_n(x) \, dx$$

$$b_n = \int_0^1 \frac{f_n(x)}{1 + (f_n(x))^2} \, dx$$

$$c_n = \int_0^1 \left| \sum_{j=1}^n f_j(x) \right| \, dx.$$

Which of the sequences must necessarily converge as $n \to \infty$? Is it for any of the convergent sequences possible to say what the limit is? Motivate your answers.

_ Solution _

The sequence a_n : This may or may not converge. If say $f_n(x) = x$ for all x, then $a_n \to 1/2$. If on the other hand $f_n = n^2 \chi_{(0,1/n)} + x \chi_{(1/n,1)}$, then $a_n \to \infty$.

The sequence b_n : The absolute value of the integrand is bounded by g(x) = 1. Since $\int_0^1 g \, dx = 1$ is finite, Lebesgue dominated convergence applies and we find that

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \int_0^1 \frac{f_n(x)}{1 + (f_n(x))^2} \, dx = \int_0^1 \lim_{n \to \infty} \frac{f_n(x)}{1 + (f_n(x))^2} \, dx = \int_0^1 \frac{x}{1 + x^2} \, dx$$
$$= \left[\frac{1}{2} \log(1 + x^2)\right]_0^1 = \frac{1}{2} \left(\log(2) - \log(1)\right) = \log(2)/2.$$

The sequence c_n : Since the integrand is non-negative, Fatou's lemma applies:

$$\liminf_{n \to \infty} c_n = \liminf_{n \to \infty} \int_0^1 \left| \sum_{j=1}^n f_j(x) \right| dx \ge \int_0^1 \liminf_{n \to \infty} \left| \sum_{j=1}^n f_j(x) \right| dx.$$

For any x, we have $\sum_{j=1}^n f_j(x) \to \infty$, so $\liminf_{n \to \infty} \left| \sum_{j=1}^n f_j(x) \right| = \infty$, and consequently $c_n \to \infty$

Problem 6: (18p) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in $L^2(\mathbb{R})$ that converges pointwise to a function f. In other words,

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \text{for all } x \in \mathbb{R}.$$

Suppose further that all f_n satisfy

$$|f_n(x)| \le 2|f(x)|,$$
 for all $x \in \mathbb{R}$.

For each of the three sets of conditions on f given below, specify for which $r \in [1, \infty)$ it is necessarily the case that

$$\lim_{n \to \infty} ||f - f_n||_{L^r(\mathbb{R})} = 0.$$

- (a) (6p) $f \in L^2(\mathbb{R})$, and for $|x| \ge 2$, it is the case that f(x) = 0.
- (b) (6p) $f \in L^2(\mathbb{R})$ and $|f(x)| \leq 2$ for all $x \in \mathbb{R}$.
- (c) (6p) $f \in L^2(\mathbb{R})$ and $f \in L^3(\mathbb{R})$.

____ Solution __

Answers:	(a) $r \in [1, 2]$.	(b) $r \in [2, \infty)$.	(c) $r \in [2,3]$.

We need to prove the claim when it is true, and provide counter-examples when it is not. The basic question we need to resolve is when

(2)
$$\lim_{n \to \infty} \int_{-\infty}^{\infty} |f(x) - f_n(x)|^r \, dx = 0$$

The integrand in (2) converges to zero pointwise, and we want to bring the LDCT to bear. To this end, we construct a dominator h via

$$|f(x) - f_n(x)|^r \le \left(|f(x)| + |f_n(x)|\right)^r \le \left(|f(x)| + 2|f(x)|\right)^r = 3^r |f(x)|^r =: h(x).$$

We will analyze each of the three assumptions to see when $\int h < \infty$.

(a) Suppose $r \in [1, 2]$. Then $h(x) = 3^r |f(x)|^r \leq 3^r \max(1, |f(x)|^2)$. Since $f \in L^2$, and since in this case, h has compact support, we find $\int h < \infty$.

Suppose r > 2. When |f(x)| > 1, we have $|f(x)|^r > |f(x)|^2$, so h does not necessarily have finite integral and the LDCT does not apply. We look for a counter-example. Pick a real number α such that $-\frac{1}{2} < \alpha < -\frac{1}{r}$, and set $f(x) = x^{\alpha} \chi_{(0,1)}$. Then $f \in L^2$. Set $f_n = (1 - 1/n) f$. Then $f_n \to f$ pointwise, but $||f - f_n||_r^r = ||(1/n)f||_r^r = \int_0^1 n^{-r} x^{\alpha r} dx = \infty$.

(b) Suppose $r \in [2, \infty)$. Then $h(x) = 3^r |f(x)|^r \le 6^r |f(x)/2|^r \le 6^r |f(x)/2|^2$, since $|f(x)/2| \le 1$ and $r \ge 2$. We find $\int h \le 6^r (1/4) ||f||_2^2 < \infty$, so LDCT applies.

Suppose $r \in [1, 2)$. In this case, the LDCT does not apply, and we look for a counter-example. Pick a real number α such that $-\frac{1}{r} < \alpha < -\frac{1}{2}$, and set $f(x) = x^{\alpha} \chi_{[1,\infty)}$. Then $f \in L^2$. Set $f_n = (1 - 1/n) f$. Then $f_n \to f$ pointwise, but $||f - f_n||_r^r = ||(1/n)f||_r^r = \int_1^\infty n^{-r} x^{\alpha r} dx = \infty$.

(c) Suppose $r \in [2,3]$. Then by interpolation (see Homework 14 – Problem 12.15), $f \in L^r$. It follows that $\int h < \infty$, and so the LDCT applies.

Suppose r < 2. In this case, construct a counter-example as in part (b) of a function f that does not decay fast enough to belong to L^r .

Suppose r > 3. In this case, construct a counter-example as in part (a) of a function f that has a sufficiently strong singularity that it does not belong to L^r .