APPM5450 - Applied Analysis: Final exam - Solutions
 7:30-9:50, May 9, 2013. Closed books.

Problem 1: (12p) No motivation required for these problems.
(a) (3p) Let $n \in \mathbb{Z}$ and define $f_{n} \in \mathcal{S}^{*}(\mathbb{R})$ via $f_{n}(x)=\sin (n x)$. What is \hat{f}_{n} ?
(b) (3p) State for which $p \in[1, \infty]$, if any, the unit ball in $L^{p}(\mathbb{R})$ is weakly compact.
(c) (3p) Set $H=L^{2}(\mathbb{R})$ and define $T \in \mathcal{B}(H)$ via $[T u](x)=u(-x)$. What is $\sigma(T)$?
(d) (3p) Let H be a Hilbert space. State the definition of a unitary operator on H.
(a) Observe that

- $\sin (n x)=(1 / 2 i)\left(e^{i n x}-e^{-i n x}\right)$,
- $\mathcal{F} \delta=\beta$ (where $\beta=1 / \sqrt{2 \pi}$),
- $\left[\mathcal{F}\left(e^{i n x} g\right)\right](t)=\hat{g}(t-n)$.

Combining, we find

$$
\hat{f}_{n}(t)=(1 / 2 i)(\beta \delta(t-n)-\beta \delta(t+n))=\frac{i}{2 \sqrt{2 \pi}} \delta(t+n)-\frac{i}{2 \sqrt{2 \pi}} \delta(t-n) .
$$

(b) This is Banach-Alaoglu, which applies in reflexive spaces. Consequently, the unit ball is weakly compact when $p \in(1, \infty)$.
(c) Observe that T is both unitary and self-adjoint. This means that the spectrum is contained in the intersection of the real line and the unit circle, which is to say $\sigma(T) \subseteq\{-1,1\}$. It is then easily verified that any even function is a eigenvector associated with $\lambda=1$ and any odd function is an eigenvector associated with $\lambda=-1$. So $\sigma(T)=\sigma_{\mathrm{p}}(T)=\{-1,1\}$.
(d) A unitary operator is a bijective operator that preserves the inner product.

Problem 2: (13p) Let H be a Hilbert space, and let A denote a bounded linear operator on H.
(a) (3p) State the definition of the resolvent set $\rho(A)$ of A.
(b) (10p) Prove that the resolvent set $\rho(A)$ is an open subset of \mathbb{C}.

Solution

(a) $\rho(A)$ is the set of complex numbers λ such that $A-\lambda I$ is one-to-one and onto.
(b) Fix $\lambda \in \rho(A)$. Then $A-\lambda I$ is continuously invertible by the open mapping theorem. Set $\varepsilon=1 /\left\|(A-\lambda I)^{-1}\right\|$ and observe that $\varepsilon>0$. For any $\mu \in B_{\varepsilon}(\lambda)$, we find

$$
\begin{equation*}
A-\mu I=A-\lambda I-(\mu-\lambda) I=(A-\lambda I)\left[I-(\mu-\lambda)(A-\lambda I)^{-1}\right] . \tag{1}
\end{equation*}
$$

Now observe that

$$
\left\|(\mu-\lambda)(A-\lambda I)^{-1}\right\| \leq|\mu-\lambda|\left\|(A-\lambda I)^{-1}\right\|<\varepsilon\left\|(A-\lambda I)^{-1}\right\|=1 .
$$

Consequently, the Neumann series argument shows that the expression in brackets in (1) is invertible.

Problem 3: (16p) Define for $\alpha, \beta \in(0, \infty)$ and for $n=1,2,3, \ldots$ functionals $A_{n}, B_{n} \in \mathcal{S}^{*}(\mathbb{R})$ via

$$
A_{n}(\varphi)=\sum_{j=1}^{n} \alpha^{j} \varphi(j), \quad \text { and } \quad B_{n}(\varphi)=\sum_{j=1}^{n} j^{\beta} \varphi(j) .
$$

(a) (8p) For which $\alpha \in(0, \infty)$ does the sequence $\left(A_{n}\right)_{n=1}^{\infty}$ converge in $\mathcal{S}^{*}(\mathbb{R})$?
(b) (8 p) For which $\beta \in(0, \infty)$ does the sequence $\left(B_{n}\right)_{n=1}^{\infty}$ converge in $\mathcal{S}^{*}(\mathbb{R})$?

Solution
Answer: For $\alpha \in(0,1]$ and for any $\beta \in(0, \infty)$.
To prove that, e.g., $\left(B_{n}\right)$ converges, we need to show that for every $\varphi \in \mathcal{S}$, the sequence $\left(B_{n}(\varphi)\right)_{n=1}^{\infty}$ converges to some number $B(\varphi)$, where $B \in \mathcal{S}^{*}$.

To prove that $\left(A_{n}\right)$ converges, we will show that there exists a $\varphi \in \mathcal{S}$, such that the sequence $\left(B_{n}(\varphi)\right)_{n=1}^{\infty}$ diverges..

- Case 1: $\beta \in(0, \infty)$

Pick k such that $k>\beta+1$. Then

$$
\left|B_{n}(\varphi)\right| \leq \sum_{j=1}^{\infty} j^{\beta}|\varphi(j)| \leq \sum_{j=1}^{\infty} j^{\beta} \frac{\|\varphi\|_{0, k}}{\left(1+j^{2}\right)^{k / 2}} \sim\|\varphi\|_{0, k} \sum_{j=1}^{\infty} j^{\beta-k}<\infty
$$

- Case 2: $\alpha \in(0,1]$

The proof is entirely analogous to Case 1 since the "weights" are bounded:

$$
\left|A_{n}(\varphi)\right| \leq \sum_{j=1}^{\infty}|\varphi(j)| \leq \sum_{j=1}^{\infty} \frac{\|\varphi\|_{0,2}}{1+j^{2}} \leq C\|\varphi\|_{0,2}
$$

- Case 3: $\alpha \in(1, \infty)$

Note that the weights grow exponentially in this case, which means that we cannot dominate the sum using a polynomial decay factor. We instead seek a Schwartz function φ such that $\alpha^{j} \varphi(j) \rightarrow \infty$. To this end, pick $\gamma \in(1, \alpha)$, and set

$$
\varphi(x)=\gamma^{-x^{2} / \sqrt{1+x^{2}}}
$$

Then $\varphi \in \mathcal{S}(\mathbb{R})$, but

$$
A_{n}(\varphi)=\sum_{j=1}^{n} \alpha^{j} \varphi(j) \sim \sum_{j=1}^{n} \alpha^{j} \gamma^{-j}=\sum_{j=1}^{n}(\alpha / \gamma)^{j} \rightarrow \infty
$$

Problem 4: (23p) Let \mathbb{T} denote the unit circle as usual, and define a function $f \in L^{2}(\mathbb{T})$ via $f(x)=x$, where \mathbb{T} is parameterized using $x \in[-\pi, \pi)$.
(a) (5p) What are the Fourier coefficients of f ?
(b) (5p) For which $s \in[0, \infty)$ is it the case that $f \in H^{s}(\mathbb{T})$?
(c) $(5 \mathrm{p})$ Use your result in (a) to prove that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.
(d) $(5 \mathrm{p})$ Let g denote the real-valued function obtained via periodic continuation of f to a 2π periodic function on \mathbb{R}. Prove that $g \in \mathcal{S}^{*}(\mathbb{R})$.
(e) $(3 \mathrm{p})$ What is the Fourier transform of the function $g \in \mathcal{S}^{*}(\mathbb{R})$ defined in (d)? No motivation required for this part. (Hint: Problem 1(a) may be useful.)

Solution

(a) Set $\beta=1 / \sqrt{2 \pi}$. Then $\alpha_{n}=\beta \int_{-\pi}^{\pi} e^{-i n x} x d x=\beta i \int_{-\pi}^{\pi} \sin (n x) x d x=\cdots=\frac{2 \beta i \pi(-1)^{n}}{n}$.
(b) We find $\|f\|_{H^{s}}^{2}=\sum\left(1+|n|^{2}\right)^{s}\left|\alpha_{n}\right|^{2}=\sum\left(1+|n|^{2}\right)^{s} \frac{4 \beta^{2} \pi^{2}}{n^{2}} \sim \sum n^{2 s} n^{-2}$.

The sum is finite iff $2 s-2<-1$, which is to say $s<1 / 2$.
(c) Parseval's theorem states that $\|f\|_{L^{2}}^{2}=\sum\left|\alpha_{n}\right|^{2}$. Now

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right|^{2} & =2 \sum_{n=1}^{\infty} \frac{4 \beta^{2} \pi^{2}}{n^{2}}=4 \pi \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
\|f\|_{L^{2}}^{2} & =\int_{-\pi}^{\pi} x^{2} d x=2 \int_{0}^{\pi} x^{2} d x=(2 / 3) \pi^{3}
\end{aligned}
$$

(d) For a given $\varphi \in \mathcal{S}$, we can bound T_{f} as follows:

$$
\left|T_{f}(\varphi)\right|=\left|\int_{-\infty}^{\infty} f(x) \varphi(x) d x\right| \leq \int_{-\infty}^{\infty}|f(x)| \frac{\|\varphi\|_{0,2}}{1+x^{2}} d x \leq \int_{-\infty}^{\infty} \pi \frac{\|\varphi\|_{0,2}}{1+x^{2}} d x=\pi^{2}\|\varphi\|_{0,2}
$$

(e) We have $f(x)=\sum_{n=-i n f t y}^{\infty} \alpha_{n} \beta e^{i n x}$. Since $\left[\mathcal{F} e^{i n x}\right](t)=\beta \delta(t-n)$, we get

$$
\hat{f}(t)=\sum_{n=-\infty}^{\infty} \alpha_{n} \beta^{2} \delta(t-n)=\sum_{n=-\infty}^{\infty} \frac{2 \beta i \pi(-1)^{n}}{n} \beta^{2} \delta(t-n)=\sum_{n=-\infty}^{\infty} \frac{i(-1)^{n}}{n \sqrt{2 \pi}} \delta(t-n)
$$

We treated the sum in a cavalier manner, but we only needed the answer!
Note: The Fourier sum simplifies as $f(x)=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin (n x)$. The first 20 terms look like:

Problem 5: $(18 \mathrm{p})$ Set $I=(0,1)$ and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of Lebesgue integrable real valued functions on the interval $I=(0,1)$ such that for every $x \in I$,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=x
$$

Consider for $n=1,2,3, \ldots$ the three sequences

$$
\begin{aligned}
a_{n} & =\int_{0}^{1} f_{n}(x) d x \\
b_{n} & =\int_{0}^{1} \frac{f_{n}(x)}{1+\left(f_{n}(x)\right)^{2}} d x \\
c_{n} & =\int_{0}^{1}\left|\sum_{j=1}^{n} f_{j}(x)\right| d x
\end{aligned}
$$

Which of the sequences must necessarily converge as $n \rightarrow \infty$? Is it for any of the convergent sequences possible to say what the limit is? Motivate your answers.

Solution

The sequence a_{n} : This may or may not converge.
If say $f_{n}(x)=x$ for all x, then $a_{n} \rightarrow 1 / 2$.
If on the other hand $f_{n}=n^{2} \chi_{(0,1 / n)}+x \chi_{(1 / n, 1)}$, then $a_{n} \rightarrow \infty$.
The sequence b_{n} : The absolute value of the integrand is bounded by $g(x)=1$. Since $\int_{0}^{1} g d x=1$ is finite, Lebesgue dominated convergence applies and we find that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{f_{n}(x)}{1+\left(f_{n}(x)\right)^{2}} d x=\int_{0}^{1} & \lim _{n \rightarrow \infty} \frac{f_{n}(x)}{1+\left(f_{n}(x)\right)^{2}} d x=\int_{0}^{1} \frac{x}{1+x^{2}} d x \\
& =\left[\frac{1}{2} \log \left(1+x^{2}\right)\right]_{0}^{1}=\frac{1}{2}(\log (2)-\log (1))=\log (2) / 2
\end{aligned}
$$

The sequence c_{n} : Since the integrand is non-negative, Fatou's lemma applies:

$$
\liminf _{n \rightarrow \infty} c_{n}=\liminf _{n \rightarrow \infty} \int_{0}^{1}\left|\sum_{j=1}^{n} f_{j}(x)\right| d x \geq \int_{0}^{1} \liminf _{n \rightarrow \infty}\left|\sum_{j=1}^{n} f_{j}(x)\right| d x
$$

For any x, we have $\sum_{j=1}^{n} f_{j}(x) \rightarrow \infty$, so $\liminf _{n \rightarrow \infty}\left|\sum_{j=1}^{n} f_{j}(x)\right|=\infty$, and consequently $c_{n} \rightarrow \infty$.

Problem 6: (18p) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions in $L^{2}(\mathbb{R})$ that converges pointwise to a function f. In other words,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \quad \text { for all } x \in \mathbb{R}
$$

Suppose further that all f_{n} satisfy

$$
\left|f_{n}(x)\right| \leq 2|f(x)|, \quad \text { for all } x \in \mathbb{R}
$$

For each of the three sets of conditions on f given below, specify for which $r \in[1, \infty)$ it is necessarily the case that

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{r}(\mathbb{R})}=0 .
$$

(a) (6p) $f \in L^{2}(\mathbb{R})$, and for $|x| \geq 2$, it is the case that $f(x)=0$.
(b) (6p) $f \in L^{2}(\mathbb{R})$ and $|f(x)| \leq 2$ for all $x \in \mathbb{R}$.
(c) $(6 \mathrm{p}) f \in L^{2}(\mathbb{R})$ and $f \in L^{3}(\mathbb{R})$.

Solution

Answers: (a) $r \in[1,2]$.
(b) $r \in[2, \infty)$.
(c) $r \in[2,3]$.

We need to prove the claim when it is true, and provide counter-examples when it is not. The basic question we need to resolve is when

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|f(x)-f_{n}(x)\right|^{r} d x=0 \tag{2}
\end{equation*}
$$

The integrand in (2) converges to zero pointwise, and we want to bring the LDCT to bear. To this end, we construct a dominator h via

$$
\left|f(x)-f_{n}(x)\right|^{r} \leq\left(|f(x)|+\left|f_{n}(x)\right|\right)^{r} \leq(|f(x)|+2|f(x)|)^{r}=3^{r}|f(x)|^{r}=: h(x) .
$$

We will analyze each of the three assumptions to see when $\int h<\infty$.
(a) Suppose $r \in[1,2]$. Then $h(x)=3^{r}|f(x)|^{r} \leq 3^{r} \max \left(1,|f(x)|^{2}\right)$. Since $f \in L^{2}$, and since in this case, h has compact support, we find $\int h<\infty$.

Suppose $r>2$. When $|f(x)|>1$, we have $|f(x)|^{r}>|f(x)|^{2}$, so h does not necessarily have finite integral and the LDCT does not apply. We look for a counter-example. Pick a real number α such that $-\frac{1}{2}<\alpha<-\frac{1}{r}$, and set $f(x)=x^{\alpha} \chi_{(0,1)}$. Then $f \in L^{2}$. Set $f_{n}=(1-1 / n) f$. Then $f_{n} \rightarrow f$ pointwise, but $\left\|f-f_{n}\right\|_{r}^{r}=\|(1 / n) f\|_{r}^{r}=\int_{0}^{1} n^{-r} x^{\alpha r} d x=\infty$.
(b) Suppose $r \in[2, \infty)$. Then $h(x)=3^{r}|f(x)|^{r} \leq 6^{r}|f(x) / 2|^{r} \leq 6^{r}|f(x) / 2|^{2}$, since $|f(x) / 2| \leq 1$ and $r \geq 2$. We find $\int h \leq 6^{r}(1 / 4)\|f\|_{2}^{2}<\infty$, so LDCT applies.

Suppose $r \in[1,2)$. In this case, the LDCT does not apply, and we look for a counter-example. Pick a real number α such that $-\frac{1}{r}<\alpha<-\frac{1}{2}$, and set $f(x)=x^{\alpha} \chi_{[1, \infty)}$. Then $f \in L^{2}$. Set $f_{n}=(1-1 / n) f$. Then $f_{n} \rightarrow f$ pointwise, but $\left\|f-f_{n}\right\|_{r}^{r}=\|(1 / n) f\|_{r}^{r}=\int_{1}^{\infty} n^{-r} x^{\alpha r} d x=\infty$.
(c) Suppose $r \in[2,3]$. Then by interpolation (see Homework $14-\operatorname{Problem} 12.15), f \in L^{r}$. It follows that $\int h<\infty$, and so the LDCT applies.

Suppose $r<2$. In this case, construct a counter-example as in part (b) of a function f that does not decay fast enough to belong to L^{r}.

Suppose $r>3$. In this case, construct a counter-example as in part (a) of a function f that has a sufficiently strong singularity that it does not belong to L^{r}.

