Solutions for Homework 1 - APPM5450 - Spring 2013

Problem 7.1:

(a) Fix $\delta>0$. For $x \in[-\delta / 2, \delta / 2]$ we have $1+\cos x \geq 1+\cos \frac{\delta}{2}$ so

$$
\begin{equation*}
\frac{1}{c_{n}}=\int_{\mathbb{T}}(1+\cos x)^{n} d x \geq \int_{-\delta / 2}^{\delta / 2}\left(1+\cos \frac{\delta}{2}\right)^{n} d x=\delta\left(1+\cos \frac{\delta}{2}\right)^{n} . \tag{1}
\end{equation*}
$$

Analogously, we find that

$$
\begin{equation*}
\int_{|x| \geq \delta} c_{n}(1+\cos x)^{n} d x \leq \int_{|x| \geq \delta} c_{n}(1+\cos \delta)^{n} d x \leq c_{n} 2 \pi(1+\cos \delta)^{n} . \tag{2}
\end{equation*}
$$

Inserting (1) into (2) and taking the limit, we find (since $1+\cos \delta<1+\cos (\delta / 2)$)

$$
\lim _{n \rightarrow \infty} \int_{|x| \geq \delta} c_{n}(1+\cos x)^{n} d x \leq \limsup _{n \rightarrow \infty} \frac{2 \pi}{\delta}\left(\frac{1+\cos \delta}{1+\cos (\delta / 2)}\right)^{n}=0 .
$$

(b) See lecture notes.
(c) No, since any function in \mathcal{P} is periodic. Consider for instance $f(x)=x$. Then for any $g \in \mathcal{P}$

$$
\|f-g\|_{\mathrm{u}} \geq \min (|f(0)-g(0)|,|f(2 \pi)-g(2 \pi)|)=\min (|g(0)|,|2 \pi-g(0)|) \geq \pi
$$

Problem 7.2: With $e_{n}(x)=e^{i n x} / \sqrt{2 \pi}$ we set

$$
f_{N}(x)=\sum_{n=-N}^{N} \alpha_{n} e_{n}(x), \quad \alpha_{n}=\left(e_{n}, f\right) .
$$

Set $\beta=1 / \sqrt{2 \pi}$. Then

$$
f_{N}(x)=\sum_{n=-N}^{N} \int_{-\pi}^{\pi} \beta e^{-i n y} f(y) d y \beta e^{i n x}=\int_{-\pi}^{\pi} \underbrace{\beta^{2} \sum_{n=-N}^{N} e^{i n(x-y)}}_{=: D_{N}(x-y)} f(y) d y
$$

We will next simplify the kernel D_{N}. To this end, set $\alpha=e^{i x}$. Then

$$
D_{N}=\beta^{2} \sum_{n=-N}^{N} \alpha^{n} .
$$

Moreover,

$$
\alpha D_{N}=\beta^{2} \sum_{n=-N}^{N} \alpha^{n+1} .
$$

In consequence,

$$
(1-\alpha) D_{N}=\beta^{2}\left(\alpha^{-N}-\alpha^{N+1}\right)
$$

It follows that

$$
D_{N}=\beta^{2} \frac{\alpha^{-N}-\alpha^{N+1}}{1-\alpha}=\beta^{2} \frac{\alpha^{-(N+1 / 2)}-\alpha^{N+1 / 2}}{\alpha^{-1 / 2}-\alpha^{1 / 2}}=\frac{1}{2 \pi} \frac{\sin ((N+1 / 2) x)}{\sin (x / 2)} .
$$

This proves part (a).

Next we set

$$
g_{N}=\frac{1}{N+1} \sum_{n=0}^{N} f_{0}=\frac{1}{N+1} \sum_{n=0}^{N} D_{n} * f=\underbrace{\left(\frac{1}{N+1} \sum_{n=0}^{N} D_{n}\right)}_{=: F_{N}} * f .
$$

It remains to simplify F_{N}. We have

$$
\begin{gathered}
F_{N}=\frac{1}{N+1} \sum_{n=0}^{N} D_{n}=\frac{1}{N+1} \sum_{n=0}^{N} \beta^{2} \frac{\alpha^{-n}-\alpha^{n+1}}{1-\alpha}=\frac{\beta^{2}}{(N+1)(1-\alpha)}\left[\frac{(1 / \alpha)^{N+1}-1}{1 / \alpha-1}-\frac{\alpha^{N+2}-\alpha}{\alpha-1}\right] \\
=\frac{\beta^{2} \alpha}{(N+1)(1-\alpha)^{2}}\left[\alpha^{-(N+1)}-2+\alpha^{N+1}\right]=\frac{\beta^{2} \alpha}{(N+1)\left(\alpha^{-1 / 2}-\alpha^{1 / 2}\right)^{2}}\left[\alpha^{-(N+1) / 2}-\alpha^{(N+1)}\right]^{2} \\
=\frac{\beta^{2} \alpha}{(N+1)(-2 i \sin (x / 2))^{2}}\left[-2 i \sin \frac{(N+1) x}{2}\right]^{2}=\frac{\beta^{2} \alpha}{(N+1)(\sin (x / 2))^{2}}\left[\sin \frac{(N+1) x}{2}\right]^{2} .
\end{gathered}
$$

This proves part (b).
For (c), we observe that D_{N} takes on non-negative values, so it is not an approximate identity. Convolution by D_{N} provides the best approximation in the L^{2}-norm, but it does not guarantee convergence in the uniform norm. In contrast, convolution by F_{N} does provide convergence in the uniform norm as long as $f \in C(\mathbb{T})$.

Problem 7.3: Start by proving that the two putative bases are in fact orthonormal sets. Then it remains to prove that their closures span the set.

Fix an $f \in L^{2}(J)$ with $J=[0, \pi]$. To construct a sequence f_{N} such that $\left\|f-f_{N}\right\|_{L^{2}(J)} \rightarrow 0$, extend f to the function

$$
\bar{f}(x)= \begin{cases}f(x) & x \geq 0 \\ -f(-x) & x<0\end{cases}
$$

Then let f_{N} be the standard Fourier series of \bar{f}. Prove that the terms in this series are all sine functions. Since the exponentials form a basis, we know that $\left\|\bar{f}-f_{N}\right\|_{L^{2}(I)} \rightarrow 0$ where $I=[-\pi, \pi]$. Since $\left\|\bar{f}-f_{N}\right\|_{L^{2}(I)}=\sqrt{2}\left\|f-f_{N}\right\|_{L^{2}(J)}$, we then find that $f_{N} \rightarrow f$ in $L^{2}(J)$.

To prove that the cosines form a basis, repeat the argument, but do it with the symmetric continuation of f instead of the anti-symmetric one. In other words, set

$$
\tilde{f}(x)= \begin{cases}f(x) & x \geq 0 \\ f(-x) & x<0\end{cases}
$$

and then use that the Fourier series for \tilde{f} involves only cosines.

Problem 7.4: This is a straight-forward calculation. You may want to look the correct answer up in a table to make sure you got the answer right.

Problem 7.5: The argument for the case $d=1$ was done in class (see posted lecture notes). This argument can easily be modified to the case of d dimensions. Let f_{N} denote the partial Fourier sum. We need to prove that $\left(f_{N}\right)$ is Cauchy with respect to the uniform norm. If $M<N$, we find

$$
\begin{aligned}
& \left|f_{M}(x)-f_{N}(x)\right|=\left|\sum_{M<|n| \leq N} \alpha_{n} e_{n}(x)\right| \leq \sum_{M<|n| \leq N}\left|\alpha_{n}\right| \\
& \leq\left(\sum_{M<|n| \leq N}|n|^{-2 k}\right)^{1 / 2}\left(\sum_{M<|n| \leq N}|n|^{2 k}\left|\alpha_{n}\right|^{2}\right)^{1 / 2} \\
& \sim\left(\int_{M \leq|x| \leq N}|x|^{-2 k} d x\right)^{1 / 2}\|f\|_{H^{k}} \sim\left(\int_{M}^{N} r^{-2 k} r^{d-1} d r\right)^{1 / 2}\|f\|_{H^{k}} \\
& \leq\left(\int_{M}^{\infty} r^{-2 k} r^{d-1} d r\right)^{1 / 2}\|f\|_{H^{k}}=\frac{1}{\sqrt{2 k-d} M^{k-d / 2}}\|f\|_{H^{k}}
\end{aligned}
$$

Problem 1: Suppose that H is a Hilbert space, and that $\left(\psi_{n}\right)_{n=1}^{\infty}$ is an ON-set in H. Let \mathcal{P} denote the set of finite linear combinations of elements in $\left(\psi_{n}\right)_{n=1}^{\infty}$. Prove that:

$$
\left(\psi_{n}\right)_{n=1}^{\infty} \text { is a basis for } H \quad \Leftrightarrow \quad \mathcal{P} \text { is dense in } H
$$

Solution: Suppose first that $\left(\psi_{n}\right)_{n=1}^{\infty}$ is a basis. Given any $f \in H$, define its partial expansion in $\left(\psi_{n}\right)$ as usual:

$$
\begin{equation*}
f_{N}=\sum_{n=1}^{N}\left(\psi_{n}, f\right) \psi_{n} \tag{3}
\end{equation*}
$$

Since $\left(\psi_{n}\right)$ is a basis, we know that $f_{N} \rightarrow f$ in norm. Since $f_{N} \in \mathcal{P}$, this proves that any function can be approximated arbitrarily well be functions in \mathcal{P}.

Suppose next that \mathcal{P} is dense. Fix an $f \in H$, and define its partial expansion f_{N} as in (3). We need to prove that $f_{N} \rightarrow f$. Fix any $\varepsilon>0$. Since \mathcal{P} is dense, there is a $g \in \mathcal{P}$ such that $\|f-g\|<\varepsilon$. Let N be a number such that $g \in \operatorname{Span}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{N}\right)=: \mathcal{P}_{N}$. Now suppose that that $M \geq N$. Then since $g \in \mathcal{P}_{M}$, and f_{M} is the best possible approximant within \mathcal{P}_{M}, we find

$$
\left\|f-f_{M}\right\| \leq\|f-g\|<\varepsilon
$$

This shows that $f_{N} \rightarrow f$.

Problem 2: Suppose that $f, g \in C(\mathbb{T})$. Prove that:
(a) $f * g \in C(\mathbb{T})$.
(b) $f * g=g * f$.

Solution:

(a) Set $h=f * g$. That h is periodic follows directly from the periodicity of f :

$$
h(x+2 \pi)=\int_{\mathbb{T}} f(x+2 \pi-y) g(y) d y=\int_{\mathbb{T}} f(x-y) g(y) d y=h(x)
$$

Next we prove continuity. Fix $\varepsilon>0$. Since f is uniformly continuous, there is a $\delta>0$ such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon /(2 \pi\|g\|)$ whenever $\left|x-x^{\prime}\right|<\delta$. Now suppose that $\left|x-x^{\prime}\right|<\delta$. Then
$\left|h(x)-h\left(x^{\prime}\right)\right|=\left|\int_{\mathbb{T}}\left(f(x-y)-f\left(x^{\prime}-y\right)\right) g(y) d y\right| \leq \int_{\mathbb{T}}\left|f(x-y)-f\left(x^{\prime}-y\right)\right||g(y)| d y \leq \int_{\mathbb{T}} \frac{\varepsilon}{2 \pi\|g\|}\|g\| d y=\varepsilon$.
(b) Simply use the change of variables $z=x-y$ in the integral. You need to verify that the limits and the minus signs work out as they should, but that should not be hard.

