
Solutions for Homework 2 — APPM5450 — Spring 2013

Exercise 7.13: Set I = [0, 1] and consider the equation

(1) i ut = −uxx, x ∈ I, t > 0,

for a complex valued function u = u(x, t) with homogeneous boundary conditions,

(2) u(0, t) = u(1, t) = 0,

and initial condition

(3) u(x, 0) = f(x).

Set
en(x) =

√
2 sin(nx).

Then (en)
∞
n=1 forms an ON-basis for L2(I). We look for a solution

(4) u(x, t) =
∞∑
n=1

αn(t) en(x).

Inserting (4) into (1) and (3), we find that αn must satisfy

i α′
n = n2 αn, αn(0) = fn,

where fn = (en, f). The solution is

αn(t) = fn e
−i n2 t.

Since |αn(t)| = |fn| for any t, it follows directly from Parseval that

||u(t)||2L2(I) =

∞∑
n=1

|αn(t)|2 =
∞∑
n=1

|fn|2 = ||f ||2,

and that (using that the cosines also form an ON-set)

||ux(t)||2L2(I) = ||
∞∑
n=1

fn e
−i n2 t n

√
2 cos(nx)||2L2(I) =

∞∑
n=1

|n fn|2 = ||fx||2.

For a direct proof, set v = Re(u) and w = Im(u) so that u = v + i w. Then (1) takes the form

vt = −wxx wt = vxx.

Now

d

dt

∫ 1

0
|u|2 dx =

d

dt

∫ 1

0
(v2 + w2) dx = 2

∫ 1

0
(vt v + wtw) dx

= 2

∫ 1

0
(−wxx v + vxxw) dx = 2

∫ 1

0
(wx vx − vxwx) dx = 0.

The second to last step was partial integration where the boundary terms vanish due to (2).
Analogously,

d

dt

∫ 1

0
|ux|2 dx =

d

dt

∫ 1

0
(v2x + w2

x) dx = 2

∫ 1

0
(vxt vx + wxtwx) dx

= 2

∫ 1

0
(−vt vxx − wtwxx) dx = 2

∫ 1

0
(−vtwt + wt vt) dx = 0.

In the second calculation we used differentiation, (2) takes the form

vt(0, t) = vt(1, t) = wt(0, t) = wt(1, t) = 0, t > 0.
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Exercise 8.3: Let P and Q be orthogonal projections. Set M = ran(P ) and N = ran(Q). TFAE:

(1) M ⊆ N
(2) QP = P
(3) PQ = P
(4) ||Px|| ≤ ||Qx|| ∀x
(5) (x, Px) ≤ (x, Qx) ∀x

Proof:

(a) ⇒ (b): Assume M ⊆ N . Then for any x, Px ∈ M ⊆ N , so QPx = Px.

(b) ⇒ (a): Assume QP = P . Pick y ∈ M . Then y = Px for some x. Then Qy = QPx = Px = y
so y ∈ N .

(a) ⇔ (c):

M ⊆ N ⇔ N⊥ ⊆ M⊥

⇔ Py = 0 ∀y ∈ N⊥

⇔ P (I −Q)x = 0 ∀x
⇔ P = PQ

(c) ⇒ (d): Assume PQ = P . Since ||P || ≤ 1 we have ||Px|| = ||PQx|| ≤ ||Qx|| for any x.

(d) ⇒ (a): Assume that (a) is false. Then there is an x ∈ M\N . Since x ∈ M we have x = Px
and so

||Px||2 = ||x||2 = ||Qx+ (I −Q)x||2 = ||Qx||2 + ||(I −Q)x||2.
Now observe that ||(I −Q)x|| > 0 since x /∈ N . Consequently,

||Qx||2 = ||Px||2 − ||(I −Q)x||2 < ||Px||2

so (d) cannot hold true.

(d) ⇔ (e): Simply observe that (x, Px) = (x, P 2x) = (Px, Px) = ||Px||2 and analogously

(x, Qx) = ||Qx||2.

Note: You may want to draw a diagram over the implications to convince yourself that all equiv-
alencies have been proven.
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Exercise 8.4: First we prove that Pn → I strongly. Fix any x ∈ H. Since
∪∞

n=1 ran(Pn) = H,
we know that x ∈ ran(PN ) for some specific N . Then, since ran(Pn) ⊆ ran(Pn+1), we see that
x ∈ ran(Pm) for any m ≥ N . Consequently, Pmx = x for any m ≥ N so Pnx → x (very rapidly!).

Next suppose that ||I − Pn|| → 0. Then there is some N such that ||I − PN || ≤ 1/2. Now observe
that I − PN is itself an orthogonal projection (onto ker(PN )) so it can only have norms 0 and 1.
It follows that ||I − PN || = 0, which is to say that PN = I. Since H = ran(PN ) ⊆ ran(PN+1) ⊆
ran(PN+2) ⊆ · · · we see that Pn = I for any n ≥ N .

Problem 1: Let T (t) denote the semigroup defined in Section 7.3 of the textbook. Prove that
T (t) → I strongly as t ↘ 0. Prove that T (t) does not converge in norm.

Solution: We consider a slightly more general problem. Let (en)
∞
n=1 be an ON-basis for a Hilbert

space H, and consider for t ≥ 0 the operator

T (t)f =

∞∑
n=1

fn e
−n2 t en.

We will show that as t ↘ 0, T (t) → I strongly but not in norm.

To show T (t) → I strongly, fix f ∈ H. Fix ε > 0. Set fn = (en, f) and pick N such that∑∞
n=N+1 |fn|2 < ε2. Then by Parseval

||T (t)f − f ||2 =
N∑

n=1

∣∣∣fn (e−n2 t − 1)
∣∣∣2 + ∞∑

n=N+1

∣∣∣fn (e−n2 t − 1)
∣∣∣2

≤
N∑

n=1

∣∣∣fn (e−n2 t − 1)
∣∣∣2 + ∞∑

n=N+1

4 |fn|2 ≤
N∑

n=1

∣∣∣fn (e−n2 t − 1)
∣∣∣2 + 4ε2.

Since only finitely many terms depend on t, we can now easily take the limit as t ↘ 0,

lim sup
t↘0

||T (t)f − f ||2 ≤ 4 ε2.

Since ε was arbitrary, we see that limt↘0 ||T (t)f − f || = 0.

To show that T (t) does not converge to I in norm, we simply observe that for any t > 0

||T (t)− I|| ≥ sup
n

||
(
T (t)− I

)
en|| = sup

n
|e−n2 t − 1| = 1.
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Problem 2: Suppose P is a projection on a Hilbert space H. TFAE:

(1) P is orthogonal, i.e. ker(P ) = ran(P )⊥.
(2) P is self-adjoint, i.e. ⟨P x, y⟩ = ⟨x, P y⟩ ∀x, y.
(3) ||P || = 0 or 1.

Proof:

(a) ⇒ (b): Assume ker(P ) = ran(P )⊥. Pick any x, y ∈ H. Then

(Px, y) = ( Px︸︷︷︸
∈ran(P )

, Py + (I − P )y︸ ︷︷ ︸
∈ker(P )

) = (Px, Py) = (Px+ (I − P )x, Py) = (x, Py).

(b) ⇒ (c): Assume that (b) holds. Then for any x,

||Px||2 = (Px, Px) = (P 2x, x) = (Px, x) ≤ ||Px|| ||x||,
so ||P || ≤ 1. Obviously it is possible for ||P || to be zero. We need to prove that the only possible
non-zero value of ||P || is one. To this end, note that if P ̸= 0, then ran(P ) ̸= {0}. Now observe
that if x is a non-zero element in ran(P ), we have Px = x so ||P || ≥ 1.

(c) ⇒ (a): Assume that (a) does not hold. Then there exist x ∈ ran(P ) and y ∈ ker(P ) such that

(x, y) ̸= 0. Set α = (x, y)/|(x, y)| and z = αy. Then z ∈ ker(P ) and (x, z) = |(x, y)| ∈ R+. Set

w = x− z t.

Then ||Pw|| = ||x||, and
||w||2 = ||x||2 − 2 t (x, z) + t2 ||z||2.

For small t, we see that ||w|| < ||x|| = ||Pw|| so ||P || > 1.

No solution is given for Problem 3 since the problem itself outlines precisely how to solve it — just
fill in the details.


