
Hints for homework set 8 — APPM5450, Spring 2013

11.5: Note that
1

x+ iε
=

x

ε2 + x2
− i

ε

ε2 + x2
.

Fix a φ ∈ S. You need to prove that

(1) lim
ε→0

⟨i ε

ε2 + x2
, φ⟩ → −iπφ(0).

and that

(2) lim
ε→0

⟨ x

ε2 + x2
, φ⟩ → ⟨PV

(
1

x

)
, φ⟩,

Proving (1) is simple:

⟨i ε

ε2 + x2
, φ⟩ =

∫ ∞

−∞
i

ε

ε2 + x2
φ(x) dx = {Set x = εy} = · · ·

For (2) we need to work a bit more (unless I overlook a simpler solution)

lim
ε→0

⟨ x

ε2 + x2
, φ⟩ − ⟨PV

(
1

x

)
, φ⟩

= lim
ε→0

∫ ∞

−∞

x

ε2 + x2
φ(x) dx− lim

ε→0

∫
|x|≥

√
ε

1

x
φ(x) dx

= lim
ε→0

∫
|x|≥

√
ε

(
x

ε2 + x2
− 1

x

)
φ(x) dx︸ ︷︷ ︸

=S1

+ lim
ε→0

∫
|x|≤

√
ε

x

ε2 + x2
φ(x) dx︸ ︷︷ ︸

=S2

.

First we bound |S1|. Note that when |x| ≥
√
ε, we have∣∣∣∣ x

ε2 + x2
− 1

x

∣∣∣∣ = ε2

|x|(ε2 + x2)
≤ ε2

|x|3
≤ ε2

ε3/2
=

√
ε.

Consequently,

|S1| ≤ lim sup
ε→0

∫
|x|≥

√
ε

∣∣∣∣ x

ε2 + x2
− 1

x

∣∣∣∣ |φ(x)| dx
≤ lim sup

ε→0

∫
|x|≥

√
ε

√
ε

1

(1 + |x|2)
|(1 + |x|2)φ(x)|︸ ︷︷ ︸

≤||φ||0,2

dx = 0.

In bounding S2 we use that ∫
|x|≤

√
ε

x

ε2 + x2
φ(0) dx = 0,

and that
|φ(x)− φ(0)| ≤ |x| ||φ′||u ≤ |x|||φ||1,0,

to obtain

|S2| =

∣∣∣∣∣limε→0

∫
|x|≤

√
ε

x

ε2 + x2
(φ(x)− φ(0)) dx

∣∣∣∣∣
≤ lim sup

ε→0

∫
|x|≤

√
ε

|x|
ε2 + x2

|x|︸ ︷︷ ︸
≤1

||φ||1,0 dx = 0.
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Problem 11.6: We find that

⟨D(log |x|)φ⟩ = −⟨log |x|φ′⟩ = −
∫
R
log |x|φ′(x) dx

= − lim
ε→0

[∫ −ε

−∞
log(−x)φ′(x) dx+

∫ ∞

ε
log(x)φ′(x) dx

]
.

Now simply perform partial integration in each term separately.

Problem 11.7: First prove that x · δ(x) = 0 and that x ·PV(1/x) = 1 (using the regular rules for
the product between a polynomial and a Schwartz function). Suppose that · is distributive and
can pair any two distributions. Then on the one hand we would have

δ(x) · x · PV(1/x) = δ(x) · (x · PV(1/x)) = δ(x) · 1 = δ(x).

But we would also have

δ(x) · x · PV(1/x) = (x · δ(x)) · PV(1/x) = 0 · PV(1/x) = 0.

This is a contradiction.

Problem 11.8: Fix φ ∈ S. Set α =
∫
φ, and define

(3) ψ(x) =

∫ x

−∞

(
φ(z)− αω(z)

)
dz.

Obviously, ψ ∈ C∞, and

(4) φ(x) = αω(x) + ψ′(x).

Moreover, we find that if n ≥ 1, then

||ψ||n,k = ||(1 + |x|2)k/2ψ(n)||u
= ||(1 + |x|2)k/2(φ(n−1) − αω(n−1))||u ≤ ||φ||n−1,k + |α| ||ω||n−1,k.

It remains to prove that for any k,

sup
x
(1 + |x|2)k/2|ψ(x)| <∞.

First consider x ≤ 0. Then for any k, we have

sup
x≤0

(1 + |x|2)k/2|ψ(x)|

≤ lim sup
x≤0

[
(1 + |x|2)k/2

∫ x

−∞

1

(1 + |y|(k+2)/2)
||φ||0,k+2 dy

+ |α|(1 + |x|2)k/2
∫ x

−∞

1

(1 + |y|(k+2)/2)
||ω||0,k+2 dy

]
<∞.

To prove the corresponding estimate for x ≥ 0, we use that since∫ x

−∞

(
φ(z)− αω(z)

)
dz︸ ︷︷ ︸

=ψ(x)

+

∫ ∞

x

(
φ(z)− αω(z)

)
dz = 0,

we can also express ψ as

ψ(x) = −
∫ ∞

x

(
φ(z)− αω(z)

)
dz.

Then proceed as in the bound for x ≤ 0.
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Problem 1:

⟨Df,φ⟩ = −⟨f, φ′⟩ = −
∫ 0

−∞
(−x)φ′(x) dx−

∫ ∞

0
xφ′(x) dx

= [xφ(x)]0−∞︸ ︷︷ ︸
=0

−
∫ 0

−∞
φ(x) dx− [xφ(x)]∞0︸ ︷︷ ︸

=0

+

∫ 0

−∞
φ(x) dx = ⟨g, φ⟩,

where

g(x) =

{
−1 x ≤ 0
1 x > 0.

So Df = g. (Note that the value of g(0) is irrelevant, any finite value can be assigned.) To
compute D2 f , simply differentiate g in the same way. You should find that D2 f = 2δ.

Problem 2: This is a fairly straight-forward application of the definitions.

Problem 3: Define for n = 1, 2, 3, . . . , the functions

χn(x) =

{
1 x ∈

[
n− 1

4n , n
]
,

0 otherwise,

and set

f(x) =
∞∑
n=1

2n χn(x).

Now prove that both (2) and (3) hold for any k.


