Homework set 12 - APPM5450, Spring 2013 - Hints

Problem 12.2:

(a) Use that $A \backslash B=A \cap B^{\mathrm{c}}=\left(A^{\mathrm{c}} \cup B\right)^{\mathrm{c}}$.
(b) Split B into two well-chosen disjoint sets and use additivity.
(c) Split $A \cup B$ into three well-chosen disjoint sets and use additivity. (I think we did this one in class.)

Problem 12.3: The trick is to write $\bigcup_{n=1}^{\infty} A_{n}$ as a disjoint union. For $n=1,2,3, \ldots$ set $B_{n}=$ $A_{n+1} \backslash A_{n}$. Then

$$
\bigcup_{n=1}^{\infty} A_{n}=A_{1} \cup\left(\bigcup_{n=1}^{\infty} B_{n}\right),
$$

where there union on the right is a disjoint one. Now use additivity twice:

$$
\begin{aligned}
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\mu & \left(A_{1} \cup\left(\bigcup_{n=1}^{\infty} B_{n}\right)\right)=\mu\left(A_{1}\right)+\sum_{n=1}^{\infty} \mu\left(B_{n}\right) \\
& =\lim _{N \rightarrow \infty}\left(\mu\left(A_{1}\right)+\sum_{n=1}^{N} \mu\left(B_{n}\right)\right)=\lim _{N \rightarrow \infty} \mu\left(A_{1} \cup\left(\bigcup_{n=1}^{N} B_{n}\right)\right)=\lim _{N \rightarrow \infty} \mu\left(A_{N}\right)
\end{aligned}
$$

For the second part, set $C=\cap_{n=1}^{\infty} A_{n}$ and $C_{n}=A_{n} \backslash A_{n+1}$. Then

$$
\mu\left(A_{N}\right)=\mu\left(C \cup\left(\bigcup_{n=N}^{\infty} C_{n}\right)\right)=\mu(C)+\sum_{n=N}^{\infty} \mu\left(C_{n}\right) .
$$

Since $\infty>\mu\left(A_{1}\right) \geq \sum_{n=1}^{\infty} \mu\left(C_{n}\right)$, we find that

$$
\lim _{N \rightarrow \infty} \sum_{n=N}^{\infty} \mu\left(C_{n}\right)=0
$$

which completes the proof. For the counterexample, consider $X=\mathbb{R}^{2}$, and $A_{n}=\left\{x=\left(x_{1}, x_{2}\right):\left|x_{2}\right|<\right.$ $1 / n\}$. Then $\mu\left(A_{n}\right)=\infty$ for all n, but $\cap_{n=1}^{\infty} A_{n}$ is the x_{1}-axis, which has measure zero.

Problem 12.5: Straight-forward.

Problem 12.7:

Reflexivity: It is obvious that $f(x)=f(x)$ a.e.

Symmetry: If $f(x)=g(x)$ a.e., then obviously $g(x)=f(x)$ a.e.

Transitivity: Suppose that $f(x)=g(x)$ a.e. and that $g(x)=h(x)$ a.e. Set

$$
\begin{aligned}
& A=\{x: f(x) \neq g(x)\} \\
& B=\{x: g(x) \neq h(x)\} \\
& C=\{x: f(x) \neq h(x)\} .
\end{aligned}
$$

We know that $\mu(A)=\mu(B)=0$, and we want to prove that $\mu(C)=0$. It is clearly the case that $C \subseteq A \cup B$, and then it follows directly that $\mu(C) \leq \mu(A)+\mu(B)=0$.

