
Homework set 14 — APPM5450, Spring 2013 — Solutions

Problem 12.8: We want to prove that

||f − fn||pp =
∫

|f − fn|p → ∞.

We know that |f−fn|p → 0 pointwise, so if we can only justify moving the limit inside the integral,
we’ll be done.

First note that
|f(x)| = lim

n→∞
|fn(x)| ≤ |g(x)|.

Then we can dominate the integrand as follows:

|f − fn|p ≤ (|f |+ |fn|)p ≤ (|g|+ |g|)p ≤ 2p|g|p.
Since

∫
|g|p < ∞, we find that the Lebesque dominated convergence theorem applies, and so

lim
n→∞

||f − fn||pp = lim
n→∞

∫
|f − fn|p = {LDCT} =

∫ (
lim
n→∞

|f − fn|p
)
=

∫
0 = 0.

Problem 12.16: Fix f ∈ Lp and ε > 0. We want to prove that there exists a δ > 0 such that for
|h| < δ, we have ||f − τhf ||p < ε.

First pick φ ∈ Cc such that ||f − φ||p < ε/3. Then

||f − τhf ||p ≤ ||f − φ||p + ||φ− τhφ||p + ||τhφ− τhf ||p
= ||f − φ||p + ||φ− τhφ||p + ||φ− f ||p < ε/3 + ||φ− τhφ||p + ε/3.

Set R = sup{|x| : φ(x) ̸= 0}. Since φ is uniformly continuous, there exists a δ such that if

|x− y| < δ, then |φ(x)− φ(y)| < ε/(3µ(BR+1(0))
1/p). Then, if h < min(δ, 1),

||φ− τhφ||pp =
∫
BR+1(0)

|φ(x)− φ(x− h)|p dx <

∫
BR+1(0)

εp

3pµ(BR+1(0))
dx <

εp

3p
.

Problem 12.17: For n = 1, 2, 3, . . . , set In = (2−n, 2−n+1), and fn = 2n/p χIn . Then ||fn||p = 1
for all n. Suppose m ̸= n, then

||fn − fm||∞ = 1,

and for p ∈ [1, ∞) we have

||fn − fm||p =
(∫ 1

0
(2nχIn + 2mχIm)

)1/p

= 21/p.

No subsequence of (fn)
∞
n=1 can be Cauchy, and therefore no subsequence can converge.

Problem 12.18: For n = 1, 2, 3, . . . , set In = (2−n, 2−n+1), and fn = 2n χIn . Let (fnj )
∞
j=1 be a

subsequence of (fn)
∞
n=1. Define g ∈ L∞ by

g =

∞∑
j=1

(−1)jχInj
,

and define φ ∈ (L1)∗ via φ(f) =
∫
fg. Then φ(fnj ) = (−1)j (verify!) and so (fnj ) cannot converge

weakly. Since L1 is not reflexive, this does not contradict that Banach-Alaoglu theorem.
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Problem 12.13: Set I = [0, 1] and let Ω be a dense set in L∞(I). For r ∈ I, set fr = χ[0, r], and
pick xr ∈ Ω ∩B1/3(fr). Since ||fr − fs|| = 1 if s ̸= r, we find that ||xr − xs|| ≥ ||fr − fs|| − ||fr −
xr|| − ||fs − xs|| ≥ 1/3, so all the xr’s are distinct. Therefore, Ω must be uncountable, and L∞

cannot be seperable.

To prove that C(I) cannot be dense in L∞(I), simply note that if f = χ[0,1/2], and φ ∈ C(I), then

||f − φ||∞ ≥ max(|φ(1/2)|, |1− φ(1/2)|) ≥ 1/2

(verify this!).

An alternative argument for why C(I) cannot be dense in L∞(I): If φn ∈ C(I), and φn → f in
the supnorm, then (φn) is a Cauchy sequence with respect to the uniform norm (when applied to
continuous functions, the uniform norm and the L∞ norms are identical). Therefore, there exists a
continuous function φ such that φn → φ uniformly. Then f(x) = φ(x) almost everywhere. But not
every equivalence class function in L∞ has a continuous function in it (for instance f = χ[0,1/2]).

Problem 12.14: Let p and q be such that 1 ≤ p < q ≤ ∞.

First we construct a function f ∈ Lp\Lq. Let α be a non-negative number and set f(x) = x−αχ[0,1].
Then

||f ||pp =
∫ 1

0
x−αp dx,

which is finite if αp < 1. Moreover

||f ||qq =
∫ 1

0
x−α q dx

which is infinite if αq > 1. Consequently, f ∈ Lp\Lq if

1

q
< α <

1

p
.

To construct a function f ∈ Lq\Lp, set f = x−αχ[1,∞). Then

||f ||pp =
∫ ∞

1
x−αp dx

which is infinite if αp < 1. Moreover

||f ||qq =
∫ ∞

1
x−αq dx

which is finite if αq > 1. Thus, f ∈ L1\Lp if

1

q
< α <

1

p
.

(The arguments above need slight modifications if q = ∞, but the idea is the same.)

Consider the function

f(x) =
1(

|x| (1 + log2 |x|)
)1/2 .
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That f ∈ L2 is clear, since

||f ||22 =
∫ ∞

−∞

1

|x|(1 + log2 |x|)
dx = 2

∫ ∞

0

1

x(1 + log2 x)
dx = {x = et}

2

∫ ∞

−∞

1

et(1 + t2)
et dt = 2π.

Moreover, if p > 2, then note that there exists a δ > 0 such that

x(p−2)/2(1 + log2 x)p/2 ≤ 1

when x ∈ (0, δ). Then

||f ||pp ≥
∫ δ

0

1

xp/2(1 + log2 x)p/2
dx =

∫ δ

0

1

x

1

x(p−2)/2 (1 + log2 x)p/2︸ ︷︷ ︸
≥1

dx = ∞.

Analogously, if p < 2, then there exists an M such that

x(p−2)/2(1 + log2 x)p/2 ≤ 1

when x ≥ M . Then

||f ||pp ≥
∫ ∞

M

1

xp/2(1 + log2 x)p/2
dx =

∫ ∞

M

1

x

1

x(p−2)/2 (1 + log2 x)p/2︸ ︷︷ ︸
≥1

dx = ∞.

Problem 12.15: Let α ∈ (0, 1), and let m,n ∈ (1,∞) be such that 1/m + 1/n = 1 (we will
determine suitable values for α,m, n later). Then from Hölder’s inequality we obtain

(1) ||f ||rr =
∫

|f |r =
∫

|f |αr|f |(1−α)r ≤
(∫

|f |αmr

)1/m(∫
|r|(1−α)nr

)1/n

.

In order to obtain the desired right hand side, we must pick α,m, n so that

αmr =p,

(1− α)nr =q,

(1/m) + (1/n) =1.

To obtain an equation for α, we eliminate m and n:

(1− α)r

q
=

1

n
= 1− 1

m
= 1− αr

p
.

Solving for α we obtain

α =
pq − pr

rq − rp
=

1/r − 1/q

1/p− 1/q
.

Equation (1) now takes the form

||f ||r ≤
((

||f ||pp
)1/m (

||f ||qq
)1/n)1/r

= ||f ||p/mr
p ||f ||q/nrq .

Finally note that

p

mr
=α =

1/r − 1/q

1/p− 1/q
,

q

nr
=1− α = 1− 1/r − 1/q

1/p− 1/q
=

1/p− 1/r

1/p− 1/q
.
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Problem 1: Let λ be a real number such that λ ∈ (0, 1), and let a and b be two non-negative real
numbers. Prove that

(2) aλ b1−λ ≤ λa+ (1− λ) b,

with equality iff a = b.

Solution: For b = 0 equation (2) reduces to 0 ≤ λa which is clearly true.

When b ̸= 0 we divide (2) by b and set t = a/b to obtain

tλ ≤ λ t+ 1− λ.

Set
f(t) = λ t+ 1− λ− tλ.

We need to prove that f(t) ≥ 0 when t ≥ 0. First note that f(0) = 1 − λ > 0 and that
limt→∞ f(t) = ∞. Since f is differentiable, we therefore need only investigate the points where
f ′(t) = 0. We find

f ′(t) = λ− λ tλ−1

so f ′(t) = 0 happens only when t = 1. Now f(1) = 0 so it follows that f(t) ≥ 0 for all t ≥ 0, and
that f(t) = 0 iff t = 1 (which is to say a = b).

Problem 2: [Hölder’s inequality] Suppose that p is a real number such that 1 < p < ∞, and let
q be such that p−1 + q−1 = 1. Let (X,µ) be a measure space, and suppose that f ∈ LP (X,µ) and
g ∈ Lq(X,µ). Prove that fg ∈ L1(X,µ), and that

(3) ||fg||1 ≤ ||f ||p ||g||q.
Prove that equality holds iff α|f |p = β|g|q for some α, β such that αβ ̸= 1.

Solution: Suppose ||f ||p = 0, then f = 0 a.e. and so (3) holds since both sides are identically zero.
Analogously, (3) holds when ||g||q = 0.

Now suppose ||f ||p ̸= 0 and ||g||q ̸= 0. Set

a =

∣∣∣∣ f(x)||f ||p

∣∣∣∣p , b =

∣∣∣∣ g(x)||g||q

∣∣∣∣q , λ =
1

p
.

Then invoke (2), observing that q(1− λ) = q(1− 1/p) = q (1/q) = 1, to obtain

|f(x)|
||f ||p

|g(x)|
||g||q

≤ 1

p

|f(x)|p

||f ||pp
+

(
1− 1

p

)
|g(x)|q

||g||qq
.

Integrate over X to obtain

1

||f ||p ||g||q

∫
X
|f(x)| |g(x)| dµ(x) ≤ 1

p

||f ||pp
||f ||pp

+

(
1− 1

p

)
||g||qq
||g||qq︸ ︷︷ ︸

=1

.

Multiply by ||f ||p ||g||q to obtain (3).
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Problem 3: [Minkowski’s inequality] Let (X,µ) be a measure space, and let p be a real number
such that 1 ≤ p ≤ ∞. Prove that for f, g ∈ Lp(X,µ),

||f + g||p ≤ ||f ||p + ||g||p.

Solution:

Suppose p = 1:

||f + g||1 =
∫

|f(x) + g(x)| ≤
∫ (

|f(x)|+ |g(x)|
)
=

∫
|f(x)|+

∫
|g(x)| = ||f ||1 + ||g||1.

Suppose p = ∞:

||f + g||∞ = ess sup |f(x) + g(x)| ≤ ess sup
(
|f(x)|+ |g(x)|

)
≤ ess sup |f(x)|+ ess sup |g(x)| = ||f ||∞ + ||g||∞.

Suppose p ∈ (1,∞): The triangle inequality yields

|f(x) + g(x)|p = |f(x) + g(x)| |f(x) + g(x)|p−1 ≤
(
|f(x)|+ |g(x)|

)
|f(x) + g(x)|p−1.

Integrate both sides:

||f + g||pp ≤
∫

|f(x)| |f(x) + g(x)|p−1 +

∫
|g(x)| |f(x) + g(x)|p−1.

Now apply Hölder:

||f + g||pp ≤ ||f ||p || |f + g|p−1||q + ||g||p || |f + g|p−1||q =
(
||f ||p+ ||g||p

) (∫
|f(x) + g(x)|q(p−1)

)1/q

.

Now use that q = 1/(1− 1/p) = p/(p− 1) to see that q(p− 1) = p to get

||f + g||pp ≤
(
||f ||p + ||g||p

) (∫
|f(x) + g(x)|p

)1/q

=
(
||f ||p + ||g||p

)
||f + g||p/qp .

Observe that p/q = p(1− 1/p) = p− 1 to obtain

||f + g||pp ≤
(
||f ||p + ||g||p

)
||f + g||p−1

p

which gives Minkowski upon division by ||f + g||p−1
p .


