APPM5450 - Applied Analysis: Section exam 1

8:30-9:50, February 25, 2013. Closed books.
The following problems are worth 25 points each.

Problem 1: Let H be a Hilbert space with an ON-basis $\left(e_{j}\right)_{j=1}^{\infty}$.
(a) State what it means for a sequence $\left(u_{n}\right)_{n=1}^{\infty}$ in H to converge weakly to a vector $u \in H$.
(b) Suppose that you are given a sequence of vectors $\left(u_{n}\right)_{n=1}^{\infty}$ for which you know:
(1) There exists a finite M such that $\left\|u_{n}\right\| \leq M$ for every n.
(2) There is a vector $u \in H$ such that for every j, we have $\lim _{n \rightarrow \infty}\left(e_{j}, u_{n}\right)=\left(e_{j}, u\right)$.

Is is necessarily the case that $\left(u_{n}\right)$ converges weakly to u ? Either prove directly from the definition you gave in (a) that this is true, or give a counter-example.

Problem 2: Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be a self-adjoint operator. Let b be a non-zero real number. Prove that the operator $B=A+i b I$ has closed range (where " i " is the imaginary unit). Is B necessarily one-to-one? Is B necessarily onto?

Problem 3: Set $I=[-\pi, \pi]$, and consider for $n=1,2,3, \ldots$ the functions

$$
u_{n}(x)=\sum_{j=1}^{n} \frac{1}{j^{7 / 4}} \cos ((2 j+1) x)
$$

(a) Does the sequence $\left(u_{n}\right)_{n=1}^{\infty}$ converge in $L^{2}(I)$? In $C(I)$? In $C^{1}(I)$? In $H^{k}(I)$ for any positive k ? Please motivate your answers briefly.
(b) What can you tell about the sequence $\left(u_{n}^{\prime}\right)_{n=1}^{\infty}$ of derivatives of u_{n} 's? Does it converge in any of the spaces mentioned in part (a)?

Problem 4: Set $I=[-\pi, \pi], H=L^{2}(I)$, and let $e_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{i n x}$ denote the standard Fourier basis for H. Define for $t \geq 0$, the operator $A(t)$ via

$$
A(t) u=\sum_{n=-\infty}^{\infty} e^{-n^{2} t}\left(e_{n}, u\right) e_{n}
$$

(a) Prove that for any $t \geq 0$, the operator $A(t)$ is continuous and determine $\|A(t)\|$.
(b) Prove that for any $t>0$ and for any $u \in H$, it is the case that $A(t) u \in C^{k}(I)$ for any k.
(c) Fix $u \in H$ and define for $t>0$ the function $v(t, x)=A(t) u$. State a second order partial differential equation that v satisfies (with boundary conditions). No motivation required.
(d) Define for $m=1,2,3, \ldots$ the operator $B_{m}=A(1 / m)$. Does $\left(B_{m}\right)_{m=1}^{\infty}$ converge in $\mathcal{B}(H)$? If so, to what? In what sense? No motivation required.

