8:30 – 9:50, February 25, 2013. Closed books.

The following problems are worth 25 points each.

Problem 1: Let *H* be a Hilbert space with an ON-basis $(e_j)_{j=1}^{\infty}$.

- (a) State what it means for a sequence $(u_n)_{n=1}^{\infty}$ in H to converge weakly to a vector $u \in H$.
- (b) Suppose that you are given a sequence of vectors $(u_n)_{n=1}^{\infty}$ for which you know:

(1) There exists a finite M such that $||u_n|| \leq M$ for every n.

(2) There is a vector $u \in H$ such that for every j, we have $\lim_{n \to \infty} (e_j, u_n) = (e_j, u)$.

Is is necessarily the case that (u_n) converges weakly to u? Either prove directly from the definition you gave in (a) that this is true, or give a counter-example.

Problem 2: Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be a self-adjoint operator. Let b be a non-zero real number. Prove that the operator B = A + i b I has closed range (where "i" is the imaginary unit). Is B necessarily one-to-one? Is B necessarily onto?

Problem 3: Set $I = [-\pi, \pi]$, and consider for n = 1, 2, 3, ... the functions

$$u_n(x) = \sum_{j=1}^n \frac{1}{j^{7/4}} \cos((2j+1)x)$$

- (a) Does the sequence $(u_n)_{n=1}^{\infty}$ converge in $L^2(I)$? In C(I)? In $C^1(I)$? In $H^k(I)$ for any positive k? Please motivate your answers briefly.
- (b) What can you tell about the sequence $(u'_n)_{n=1}^{\infty}$ of *derivatives* of u_n 's? Does it converge in any of the spaces mentioned in part (a)?

Problem 4: Set $I = [-\pi, \pi]$, $H = L^2(I)$, and let $e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$ denote the standard Fourier basis for H. Define for $t \ge 0$, the operator A(t) via

$$A(t)u = \sum_{n=-\infty}^{\infty} e^{-n^2 t} (e_n, u) e_n.$$

- (a) Prove that for any $t \ge 0$, the operator A(t) is continuous and determine ||A(t)||.
- (b) Prove that for any t > 0 and for any $u \in H$, it is the case that $A(t) u \in C^k(I)$ for any k.
- (c) Fix $u \in H$ and define for t > 0 the function v(t, x) = A(t)u. State a second order partial differential equation that v satisfies (with boundary conditions). No motivation required.
- (d) Define for m = 1, 2, 3, ... the operator $B_m = A(1/m)$. Does $(B_m)_{m=1}^{\infty}$ converge in $\mathcal{B}(H)$? If so, to what? In what sense? No motivation required.