APPM5450 - Applied Analysis: Section exam 1 - Solutions

8:30 - 9:50, February 25, 2013. Closed books.
Problem 1: Let H be a Hilbert space with an ON-basis $\left(e_{j}\right)_{j=1}^{\infty}$.
(a) State what it means for a sequence $\left(u_{n}\right)_{n=1}^{\infty}$ in H to converge weakly to a vector $u \in H$.
(b) Suppose that you are given a sequence of vectors $\left(u_{n}\right)_{n=1}^{\infty}$ for which you know:
(1) There exists a finite M such that $\left\|u_{n}\right\| \leq M$ for every n.
(2) There is a vector $u \in H$ such that for every j, we have $\lim _{n \rightarrow \infty}\left(e_{j}, u_{n}\right)=\left(e_{j}, u\right)$.

Is is necessarily the case that $\left(u_{n}\right)$ converges weakly to u ? Either prove directly from the definition you gave in (a) that this is true, or give a counter-example.

Solution:

(a) For every $y \in H$, it is the case that $\lim _{n \rightarrow \infty}\left(y, u_{n}\right)=(y, u)$.
(b) Suppose (1) and (2) hold.

Pick $y \in H$. Fix $\varepsilon>0$.
Pick $y^{\prime} \in \operatorname{Span}\left\{e_{j}\right\}_{j=1}^{\infty}$ such that $\left\|y-y^{\prime}\right\|<\varepsilon /(M+\|u\|)$.
Now observe that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|\left(y, u_{n}-u\right)\right| & =\limsup _{n \rightarrow \infty}\left|\left(y^{\prime}, u_{n}-u\right)+\left(y-y^{\prime}, u_{n}-u\right)\right| \\
& \leq \limsup _{n \rightarrow \infty}\left(\left|\left(y^{\prime}, u_{n}-u\right)\right|+\left\|y-y^{\prime}\left|\|\mid\| u_{n}-u \|\right)\right.\right. \\
& \leq \limsup _{n \rightarrow \infty}\left(\left|\left(y^{\prime}, u_{n}-u\right)\right|+\left\|y-y^{\prime} \mid\right\|(M+\|u\|)\right. \\
& =\left\|y-y^{\prime}\right\|(M+\|u\|)<\varepsilon .
\end{aligned}
$$

(The last equality follows from assumption (2) since y^{\prime} is a finite linear combination of e_{j} 's.)

Problem 2: Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be a self-adjoint operator. Let b be a non-zero real number. Prove that the operator $B=A+i b I$ has closed range (where " i " is the imaginary unit). Is B necessarily one-to-one? Is B necessarily onto?

Solution: First we prove that B is necessarily coercive. For any $x \in H$, we have

$$
\|B x\|^{2}=(A x+i b x, A x+i b x)=\|A x\|^{2}+2 \operatorname{Re}((A x, i b x))+\|i b x\|^{2} \geq 2 \operatorname{Re}((A x, i b x))+b^{2}\|x\| .
$$

Since A is self-adjoint, the number $(A x, i b x)=i b(A x, x)$ is a purely imaginary. Therefore

$$
\|B x\|^{2} \geq b^{2}\|x\|^{2}
$$

Since B is coercive, it necessarily has closed range due to the closed range theorem.
Since B is coercive, it must obviously be one-to-one.
To prove that B is onto, note that

$$
\overline{\operatorname{ran}(B)}=\operatorname{ker}\left(B^{*}\right)^{\perp}=\operatorname{ker}\left(A^{*}-i b I\right)^{\perp}=\operatorname{ker}(A-i b I)^{\perp} .
$$

We proved above that $A-i b I$ is coercive, so

$$
\overline{\operatorname{ran}(B)}=\{0\}^{\perp}=H .
$$

Finally invoke our finding that B has closed range to deduce $\operatorname{ran}(B)=H$.

Problem 3: Set $I=[-\pi, \pi]$, and consider for $n=1,2,3, \ldots$ the functions

$$
u_{n}(x)=\sum_{j=1}^{n} \frac{1}{j^{7 / 4}} \cos ((2 j-1) x)
$$

(a) Does the sequence $\left(u_{n}\right)_{n=1}^{\infty}$ converge in $L^{2}(I)$? In $C(I)$? In $C^{1}(I)$? In $H^{k}(I)$ for any positive k ? Please motivate your answers briefly.
(b) What can you tell about the sequence $\left(u_{n}^{\prime}\right)_{n=1}^{\infty}$ of derivatives of u_{n} 's? Does it converge in any of the spaces mentioned in part (a)?

Solution:

(a) First observe that $\left(u_{n}\right)$ is a Cauchy sequence in $C(I)$ since, for $N \leq m \leq n$, we have

$$
\left|u_{n}(x)-u_{m}(x)\right|=\left|\sum_{j=m+1}^{n} \frac{1}{j^{7 / 4}} \cos ((2 j-1) x)\right| \leq \sum_{j=m+1}^{n} \frac{1}{j^{7 / 4}} \leq \sum_{j=N+1}^{\infty} \frac{1}{j^{7 / 4}} .
$$

Consequently, the limit function

$$
u(x)=\sum_{j=1}^{\infty} \frac{1}{j^{7 / 4}} \cos ((2 j-1) x)
$$

exists, and it is a continuous function. $u_{n} \rightarrow u$ in $C(I)$, and hence also in $L^{2}(I)$.
Next we check in which Sobolev spaces we have convergence. Let $\alpha_{n}=\left(e_{n}, u\right)$ be the n 'th Fourier coefficient of u. By direct inspection, we find

$$
\alpha_{n}= \begin{cases}0 & n \text { is even } \\ \sqrt{\frac{\pi}{2}}\left(\frac{2}{|n|+1}\right)^{7 / 4} & n \text { is odd }\end{cases}
$$

For $k \geq 0$, we have

$$
\|u\|_{H^{k}}^{2}=\sum_{n=-\infty}^{\infty}\left(1+|n|^{2}\right)^{k}\left|\alpha_{n}\right|^{2} \sim \sum_{n=1}^{\infty} n^{2 k} \frac{1}{n^{7 / 2}} .
$$

The sum is finite if and only if $2 k-7 / 2<-1$. In other words,

$$
u \in H^{k} \quad \Leftrightarrow \quad k<5 / 4 \text {. }
$$

So $u_{n} \rightarrow u$ in $H^{k}(I)$ for $k<5 / 4$. By the Sobolev embedding theorem, we find that u does not converge in $C^{1}(I)$ (since $u \notin H^{3 / 2+\epsilon}$).
(b) Since

$$
u \in H^{k} \quad \Leftrightarrow \quad u^{\prime} \in H^{k-1}
$$

we find that

$$
u^{\prime} \in H^{k} \quad \Leftrightarrow \quad k<1 / 4 .
$$

Therefore, $\left(u_{n}^{\prime}\right)_{n=1}^{\infty}$ converges in $L^{2}(I)$ and in $H^{k}(I)$ when $k<1 / 4$.
But $\left(u_{n}^{\prime}\right)_{n=1}^{\infty}$ converges in neither $C(I)$ nor $C^{1}(I)$.

Plots of the function u_{n} for large n. Note that u_{n} looks to be continuous, but not C^{1}.

Next we plot $w_{n}(x)=\sum_{j=1}^{n} \frac{1}{j^{9 / 4}} \cos ((2 j-1) x)$. A little faster decay in the Fourier coefficients gives us a little more smoothness - just enough to push us into C^{1} continuity.

Problem 4: Set $I=[-\pi, \pi], H=L^{2}(I)$, and let $e_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{i n x}$ denote the standard Fourier basis for H. Define for $t \geq 0$, the operator $A(t)$ via

$$
A(t) u=\sum_{n=-\infty}^{\infty} e^{-n^{2} t}\left(e_{n}, u\right) e_{n}
$$

(a) Prove that for any $t \geq 0$, the operator $A(t)$ is continuous and determine $\|A(t)\|$.
(b) Prove that for any $t>0$ and for any $u \in H$, it is the case that $A(t) u \in C^{k}(I)$ for any k.
(c) Fix $u \in H$ and define for $t>0$ the function $v(t, x)=A(t) u$. State a second order partial differential equation that v satisfies (with boundary conditions). No motivation required.
(d) Define for $m=1,2,3, \ldots$ the operator $B_{m}=A(1 / m)$. Does $\left(B_{m}\right)_{m=1}^{\infty}$ converge in $\mathcal{B}(H)$? If so, to what? In what sense? No motivation required.

Solution:

(a) For any $u \in H$ and for any $t \geq 0$, we have

$$
\|A u\|^{2}=\sum_{n} e^{-2 n^{2} t}\left|\left(e_{n}, u\right)\right|^{2} \leq \sum_{n}\left|\left(e_{n}, u\right)\right|^{2}=\|u\|^{2},
$$

so $\|A\| \leq 1$. To prove that $\|A\|=1$, simply note that $A e_{0}=e_{0}$.
(b) For any $t>0$ and for any $k \geq 0$, set

$$
C=\sup _{n \in \mathbb{Z}}\left(1+|n|^{2}\right)^{k} e^{-2 n^{2} t} .
$$

Clearly C must be finite. Now for any $u \in H$, we have

$$
\|A(t) u\|_{H^{k}}^{2}=\sum_{n}\left(1+|n|^{2}\right)^{k} e^{-2 n^{2} t}\left|\left(e_{n}, u\right)\right|^{2} \leq C \sum_{n}\left|\left(e_{n}, u\right)\right|^{2}=C\|u\|^{2},
$$

so $A(t) u \in H^{k}$ for any k. From the Sobolev embedding theorem we get $A(t) u \in C^{k}$ for any k.
(c) v satisfies the heat equation with periodic boundary conditions:

$$
\begin{aligned}
\Delta v & =\frac{\partial^{2} v}{\partial t^{2}} \\
v(-\pi) & =v(\pi) \\
v^{\prime}(-\pi) & =v^{\prime}(\pi)
\end{aligned}
$$

The initial condition is

$$
v(0, x)=u(x),
$$

but this is enforced only in the sense that $\lim _{t \rightarrow 0}\|v(t, \cdot)-u\|_{L^{2}(I)}=0$.
(No discussion of the initial condition is required for full credit.)
(d) $\left(B_{m}\right)$ converges strongly to the identity operator. It does not converge in norm.

First we prove that $B_{m} \rightarrow I$ strongly. Fix $u \in H$. Fix $\varepsilon>0$. Pick N such that

$$
\sum_{|n|>N}\left|\left(e_{n}, u\right)\right|^{2}<\varepsilon .
$$

Then

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|B_{m} u-u\right\|^{2} & =\limsup _{m \rightarrow \infty}\left(\sum_{|n| \leq N}\left|e^{-n^{2} / m}-1\right|^{2}\left|\left(e_{n}, u\right)\right|^{2}+\sum_{|n|>N}\left|e^{-n^{2} / m}-1\right|^{2}\left|\left(e_{n}, u\right)\right|^{2}\right) \\
& \leq \limsup _{m \rightarrow \infty}\left(\sum_{|n| \leq N}\left|e^{-n^{2} / m}-1\right|^{2}\left|\left(e_{n}, u\right)\right|^{2}+\sum_{|n|>N}\left|\left(e_{n}, u\right)\right|^{2}\right) \\
& \leq \limsup _{m \rightarrow \infty}\left(\sum_{|n| \leq N}\left|e^{-n^{2} / m}-1\right|^{2}\left|\left(e_{n}, u\right)\right|^{2}+\varepsilon^{2}\right)=\varepsilon^{2} .
\end{aligned}
$$

Since ε is arbitrary, we find $\left\|B_{m} u-u\right\| \rightarrow 0$.
To see that B_{m} does not converge in norm, observe that I is the only possibly limit point (since the sequence converges strongly to I), and that

$$
\left\|B_{m}-I\right\| \geq \sup _{n}\left\|B_{m} e_{n}-e_{n}\right\|=\sup _{n}\left|e^{-n^{2} / m}-1\right|=1
$$

