APPM5450 - Applied Analysis: Section exam 2

8:30 - 9:50, March 20, 2013. Closed books.

Problem 1: $(5 \mathrm{p})$ Let A be a compact self-adjoint operator on a Hilbert space H. You know that $\sigma(A)=\{0\} \cup\{1,1 / 2,1 / 3,1 / 4, \ldots\}$. Set $\lambda=1 / \pi$. What is $\left\|(A-\lambda I)^{-1}\right\|$? No motivation required.

Problem 2: (5p) Let H be a Hilbert space, and suppose that $A \in \mathcal{B}(H)$. You know that $\|A\|=2$ and $A^{3}=0$. What can you say about $\sigma(A)$? Please motivate briefly.

Problem 3: (10p) Set $H=L^{2}(\mathbb{R})$, and $[A u](x)=u(x-1)$. No motivation required.
(a) (4p) Specify $\inf _{\lambda \in \sigma(A)}|\lambda|$.
(b) (4p) Specify $\sup _{\lambda \in \sigma(A)}|\lambda|$.
(c) (2p) Specify $\sigma(A)$. Hint: This problem could be slightly challenging and is only worth $2 p$!

Problem 4: (30p) Consider the Hilbert space $H=L^{2}(\mathbb{R})$. Define a function $f \in C_{\mathrm{b}}(\mathbb{R})$ via

$$
f(x)=\left\{\begin{array}{rl}
\arctan (x) & x>0 \\
0 & x \leq 0
\end{array}\right.
$$

Define a linear operator $A: H \rightarrow H$ via

$$
[A u](x)=f(x) u(x)
$$

(a) (5p) Specify $\|A\|$. No motivation required.
(b) (5p) Is A self-adjoint? Compact? Non-negative? Positive? No motivation required.
(c) (12p) Specify $\sigma(A), \sigma_{\mathrm{r}}(A), \sigma_{\mathrm{c}}(A)$, and $\sigma_{\mathrm{p}}(A)$. No motivation required.
(d) (8p) Provide brief motivations for your claims in (c).

Problem 5: (25p) Consider four maps $T_{i}: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ defined via

$$
\begin{aligned}
& T_{1}(\varphi)=\sup _{x \in \mathbb{R}} \varphi(x) \\
& T_{2}(\varphi)=\varphi^{\prime}(2) \\
& T_{3}(\varphi)=\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \varphi(x) d x \\
& T_{4}(\varphi)=\lim _{\varepsilon \rightarrow 0}\left[\int_{|x| \geq \varepsilon} \frac{1}{x^{2}} \varphi(x) d x-\frac{2 \varphi(0)}{\varepsilon}\right] .
\end{aligned}
$$

No motivation required for these problems:
(a) (11p) Which of the maps T_{i} belong to $\mathcal{S}^{*}(\mathbb{R})$?
(b) (7p) For the maps that do belong to $\mathcal{S}^{*}(\mathbb{R})$, state the order of the map.
(c) (7p) For the maps that do belong to $\mathcal{S}^{*}(\mathbb{R})$, specify a continuous function f_{i} on \mathbb{R} such that T_{i} is a derivative (first, second, third, \ldots) of f_{i}.

Problem 6: (25p) Let φ be a Schwartz function on \mathbb{R}. Define for $N=1,2,3, \ldots$, the function ψ_{N} via

$$
\psi_{N}(x)=\sum_{n=1}^{N} \frac{1}{n^{2}} \varphi(x-n) .
$$

Please motivate your answers to the following questions briefly.
(a) (7p) Is the function ψ_{N} necessarily a Schwartz function?
(b) (9p) Does the sequence $\left(\psi_{N}\right)_{N=1}^{\infty}$ necessarily converge in $C_{\mathrm{b}}(\mathbb{R})$?
(c) (9p) Does the sequence $\left(\psi_{N}\right)_{N=1}^{\infty}$ necessarily converge in $\mathcal{S}(\mathbb{R})$?

