APPM5450 — Applied Analysis: Section exam 2

8:30 – 9:50, March 20, 2013. Closed books.

Problem 1: (5p) Let A be a compact self-adjoint operator on a Hilbert space H. You know that $\sigma(A) = \{0\} \cup \{1, 1/2, 1/3, 1/4, \ldots\}$. Set $\lambda = 1/\pi$. What is $||(A - \lambda I)^{-1}||$? No motivation required.

Problem 2: (5p) Let *H* be a Hilbert space, and suppose that $A \in \mathcal{B}(H)$. You know that ||A|| = 2 and $A^3 = 0$. What can you say about $\sigma(A)$? Please motivate briefly.

Problem 3: (10p) Set $H = L^2(\mathbb{R})$, and [Au](x) = u(x-1). No motivation required.

- (a) (4p) Specify $\inf_{\lambda \in \sigma(A)} |\lambda|$.
- (b) (4p) Specify $\sup_{\lambda \in \sigma(A)} |\lambda|$.
- (c) (2p) Specify $\sigma(A)$. Hint: This problem could be slightly challenging and is only worth 2p!

Problem 4: (30p) Consider the Hilbert space $H = L^2(\mathbb{R})$. Define a function $f \in C_{\rm b}(\mathbb{R})$ via

$$f(x) = \begin{cases} \arctan(x) & x > 0, \\ 0 & x \le 0. \end{cases}$$

Define a linear operator $A: H \to H$ via

$$[Au](x) = f(x) u(x).$$

- (a) (5p) Specify ||A||. No motivation required.
- (b) (5p) Is A self-adjoint? Compact? Non-negative? Positive? No motivation required.
- (c) (12p) Specify $\sigma(A)$, $\sigma_{\rm r}(A)$, $\sigma_{\rm c}(A)$, and $\sigma_{\rm p}(A)$. No motivation required.
- (d) (8p) Provide brief motivations for your claims in (c).

Problem 5: (25p) Consider four maps $T_i : \mathcal{S}(\mathbb{R}) \to \mathbb{C}$ defined via

$$T_1(\varphi) = \sup_{x \in \mathbb{R}} \varphi(x)$$

$$T_2(\varphi) = \varphi'(2)$$

$$T_3(\varphi) = \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{1}{x} \varphi(x) \, dx$$

$$T_4(\varphi) = \lim_{\varepsilon \to 0} \left[\int_{|x| \ge \varepsilon} \frac{1}{x^2} \varphi(x) \, dx - \frac{2\varphi(0)}{\varepsilon} \right].$$

No motivation required for these problems:

- (a) (11p) Which of the maps T_i belong to $\mathcal{S}^*(\mathbb{R})$?
- (b) (7p) For the maps that do belong to $\mathcal{S}^*(\mathbb{R})$, state the *order* of the map.
- (c) (7p) For the maps that do belong to $\mathcal{S}^*(\mathbb{R})$, specify a continuous function f_i on \mathbb{R} such that T_i is a derivative (first, second, third, ...) of f_i .

Problem 6: (25p) Let φ be a Schwartz function on \mathbb{R} . Define for $N = 1, 2, 3, \ldots$, the function ψ_N via

$$\psi_N(x) = \sum_{n=1}^N \frac{1}{n^2} \varphi(x-n).$$

Please motivate your answers to the following questions briefly.

- (a) (7p) Is the function ψ_N necessarily a Schwartz function?
- (b) (9p) Does the sequence $(\psi_N)_{N=1}^{\infty}$ necessarily converge in $C_{\rm b}(\mathbb{R})$?
- (c) (9p) Does the sequence $(\psi_N)_{N=1}^{\infty}$ necessarily converge in $\mathcal{S}(\mathbb{R})$?