## APPM5450 - Applied Analysis: Section exam 2 - Solutions

8:30-9:50, March 20, 2013. Closed books.

Problem 1: $(5 \mathrm{p})$ Let $A$ be a compact self-adjoint operator on a Hilbert space $H$. You know that $\sigma(A)=\{0\} \cup\{1,1 / 2,1 / 3,1 / 4, \ldots\}$. Set $\lambda=1 / \pi$. What is $\left\|(A-\lambda I)^{-1}\right\|$ ? No motivation required.
Solution: Recall that $\left\|(A-\lambda I)^{-1}\right\|=1 / d$ where $d=\operatorname{dist}(\lambda, \sigma(A))=\inf \{|\lambda-\mu|: \mu \in \sigma(A)\}$.
In this case, $d=\frac{1}{3}-\frac{1}{\pi}$ so $\left\|(A-\lambda I)^{-1}\right\|=\frac{1}{\frac{1}{3}-\frac{1}{\pi}}=\frac{3 \pi}{\pi-3}$.

Problem 2: (5p) Let $H$ be a Hilbert space, and suppose that $A \in \mathcal{B}(H)$. You know that $\|A\|=2$ and $A^{3}=0$. What can you say about $\sigma(A)$ ? Please motivate briefly.

Solution: Recall that $r(A)=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}$. In this case, $A^{n}=0$ when $n \geq 3$, so $r(A)=0$. It follows that $\sigma(A)=\{0\}$.

Partial credit is given for the answer $\sigma(A) \subseteq\{\lambda \in \mathbb{C}:|\lambda| \leq 2\}$. (Note however that since $A$ is not necessarily self-adjoint, you cannot state that $\sigma(A) \subseteq[-2,2]$.)

Problem 3: (10p) Set $H=L^{2}(\mathbb{R})$, and $[A u](x)=u(x-1)$. No motivation required.
(a) (4p) Specify $\inf _{\lambda \in \sigma(A)}|\lambda| \cdot=1$
(b) (4p) Specify $\sup _{\lambda \in \sigma(A)}|\lambda| .=1$
(c) (2p) Specify $\sigma(A) .=\{\lambda \in \mathbb{C}:|\lambda|=1\}$

Solution: The operator $A$ is unitary since $\left[A^{*} u\right](x)=u(x+1)$ and so $A^{*}=A^{-1}$. It then follows that $\sigma(A) \subseteq\{\lambda \in \mathbb{C}:|\lambda|=1\}$. The answers to (a) and (b) follow immediately from this statement. Note that even if you did not observe that $A$ is unitary, you can easily get the correct answer to (b) by simply observing that $\|A\|=1$.

To get the answer to (c), proceed as follows: Suppose $\lambda=e^{i \theta}$ for some real number $\theta \in[-\pi, \pi]$. Then the function $U(x)=e^{-i \theta x}$ is almost an eigenvector of $A$. The problem is that $\|U\|_{L^{2}}=\infty$. But now set $u_{N}=(2 N)^{-1 / 2} U \chi_{[-N, N]}$, observe that $\left\|u_{N}\right\|_{L^{2}}=1$, and $\lim _{N \rightarrow \infty}\left\|\left(A-e^{i \theta}\right) u_{N}\right\|=0$ to establish that $e^{i \theta} \in \sigma(A)$.

Problem 4: (30p) Consider the Hilbert space $H=L^{2}(\mathbb{R})$. Define a function $f \in C_{\mathrm{b}}(\mathbb{R})$ via

$$
f(x)=\left\{\begin{array}{rl}
\arctan (x) & x>0 \\
0 & x \leq 0
\end{array}\right.
$$

Define a linear operator $A: H \rightarrow H$ via

$$
[A u](x)=f(x) u(x)
$$

(a) (5p) Specify $\|A\|$. No motivation required.
(b) $(5 p)$ Is $A$ self-adjoint? Compact? Non-negative? Positive? No motivation required.
(c) (12p) Specify $\sigma(A), \sigma_{\mathrm{r}}(A), \sigma_{\mathrm{c}}(A)$, and $\sigma_{\mathrm{p}}(A)$. No motivation required.
(d) (8p) Provide brief motivations for your claims in (c).

## Solution:

(a) $\pi / 2$
(b) $A$ is S-A and non-negative; not compact; not positive.
(c)
$\sigma_{\mathrm{r}}(A)=\emptyset$ since $A$ is S-A.
$\sigma_{\mathrm{p}}(A)=\{0\}$. First note that $A u=0$ if $u$ is supported in $(-\infty, 0]$, this shows that $0 \in \sigma_{\mathrm{p}}(A)$. Next suppose $\lambda \neq 0$. Then show that if $(f(x)-\lambda) u(x)=0$, then $u(x)=0$ except possibly for at a single point. This shows that $A-\lambda I$ is one-to-one, and so $0 \notin \sigma_{\mathrm{p}}(A)$.
$\sigma_{\mathrm{c}}(A)=(0, \pi / 2]$. Since $A$ is non-negative and $\|A\|=\pi / 2$, we know that $\sigma_{\mathrm{c}}(A) \subseteq[0, \pi / 2]$. Since $\sigma_{\mathrm{p}}(A)=\{0\}$, we can further conclude that $\sigma_{\mathrm{c}}(A) \subseteq(0, \pi / 2]$. We have already shown that for $\lambda \in(0, \pi / 2]$, the operator $A-\lambda I$ is one-to-one. To complete the argument, simply prove that $A-\lambda I$ is not coercive.
$\sigma(A)=[0, \pi / 2]$

Problem 5: (25p) Consider four maps $T_{i}: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ defined via

$$
\begin{aligned}
& T_{1}(\varphi)=\sup _{x \in \mathbb{R}} \varphi(x) \\
& T_{2}(\varphi)=\varphi^{\prime}(2) \\
& T_{3}(\varphi)=\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} \varphi(x) d x \\
& T_{4}(\varphi)=\lim _{\varepsilon \rightarrow 0}\left[\int_{|x| \geq \varepsilon} \frac{1}{x^{2}} \varphi(x) d x-\frac{2 \varphi(0)}{\varepsilon}\right] .
\end{aligned}
$$

No motivation required for these problems:
(a) (11p) Which of the maps $T_{i}$ belong to $\mathcal{S}^{*}(\mathbb{R})$ ?
(b) (7p) For the maps that do belong to $\mathcal{S}^{*}(\mathbb{R})$, state the order of the map.
(c) (7p) For the maps that do belong to $\mathcal{S}^{*}(\mathbb{R})$, specify a continuous function $f_{i}$ on $\mathbb{R}$ such that $T_{i}$ is a derivative (first, second, third, ...) of $f_{i}$.

## Solution:

- $T_{1}$ is not linear.
- $T_{2}$ has degree 1. (In fact $T_{2}=-\delta_{2}^{\prime}$ ). Set $f(x)=-\frac{1}{2}|x-2|$, then $T_{2}=\partial^{3} f$.
- $T_{3}$ has degree 1 (see course notes). Set $g(x)=x \log |x|-x$. Then $T_{3}=\partial^{2} g$.
- $T_{4}$ is the derivative of $T_{3}$ and has degree 2. So $T_{4}=\partial^{3} g$, with $g(x)=x \log |x|-x$.

Problem 6: (25p) Let $\varphi$ be a Schwartz function on $\mathbb{R}$. Define for $N=1,2,3, \ldots$, the function $\psi_{N}$ via

$$
\psi_{N}(x)=\sum_{n=1}^{N} \frac{1}{n^{2}} \varphi(x-n) .
$$

Please motivate your answers to the following questions briefly.
(a) (7p) Is the function $\psi_{N}$ necessarily a Schwartz function?
(b) (9p) Does the sequence $\left(\psi_{N}\right)_{N=1}^{\infty}$ necessarily converge in $C_{\mathrm{b}}(\mathbb{R})$ ?
(c) (9p) Does the sequence $\left(\psi_{N}\right)_{N=1}^{\infty}$ necessarily converge in $\mathcal{S}(\mathbb{R})$ ?

## Solution:

(a) Yes, $\psi_{N}$ is a finite sum of Schwartz functions and since $\mathcal{S}$ is a linear space, $\psi_{N} \in \mathcal{S}$. (Observe that if $\varphi \in \mathcal{S}$, then $\tau_{n} \varphi \in \mathcal{S}$.)
(b) Yes, each $\psi_{N} \in C_{\mathrm{b}}$, and we can prove that the sequence is Cauchy w.r.t. the uniform norm: Given $N$, pick $m$ and $n$ such that $N \leq m \leq n$, then

$$
\left\|\psi_{n}-\psi_{m}\right\|_{\mathrm{u}}=\left\|\sum_{j=m+1}^{n} \frac{1}{j^{2}} \tau_{j} \varphi\right\|_{\mathrm{u}} \leq \sum_{j=m+1}^{n} \frac{1}{j^{2}}\left\|\tau_{j} \varphi\right\|_{\mathrm{u}}=\|\varphi\|_{\mathrm{u}} \sum_{j=m+1}^{n} \frac{1}{j^{2}} \leq\|\varphi\|_{\mathrm{u}} \sum_{j=N+1}^{\infty} \frac{1}{j^{2}} \rightarrow 0
$$

as $N \rightarrow \infty$.
(c) The sequence typically does not converge in $\mathcal{S}$. For instance, set $\varphi(x)=e^{-x^{2}}$. Then the uniform limit of $\psi_{N}$ is the function

$$
\psi(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} e^{-(x-n)^{2}}
$$

which does not belong to $\mathcal{S}$ since it does not decay faster than any polynomial. In particular,

$$
\|\psi\|_{0,3}=\sup _{x \in \mathbb{R}}\left(1+|x|^{6}\right)^{1 / 2}|\psi(x)| \geq \sup _{n \in \mathbb{N}}\left(1+|n|^{6}\right)^{1 / 2}|\psi(n)| \geq \sup _{n \in \mathbb{N}}\left(1+|n|^{6}\right)^{1 / 2} \frac{1}{n^{2}}=\infty .
$$

