8:30 – 9:50, April 24, 2013. Closed books.

Problem 1: (36p) No motivation required.

- (a) (6p) Define $T \in \mathcal{S}^*(\mathbb{R}^d)$ via $\langle T, \varphi \rangle = \varphi(0)$. What is \hat{T} ?
- (b) (6p) Define $T \in \mathcal{S}^*(\mathbb{R}^d)$ via $\langle T, \varphi \rangle = \varphi(0)$. State for which $s \in \mathbb{R}$ (if any) we have

$$\int_{\mathbb{R}^d} (1+|t|^2)^s \, |\hat{T}(t)|^2 \, dt < \infty.$$

(Recall that this is the definition for when $T \in H^{s}(\mathbb{R}^{d})$.)

- (c) (6p) Define $T \in \mathcal{S}^*(\mathbb{R})$ via $T(x) = \chi_{[0,1]}(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & x \notin [0,1] \end{cases}$. What is \hat{T} ?
- (d) (6p) Define $T \in \mathcal{S}^*(\mathbb{R})$ via $T(x) = \operatorname{sign}(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$ What is \hat{T} ?
- (e) (6p) Give an example of a non-zero Schwartz function $\varphi \in \mathcal{S}(\mathbb{R})$ such that $\mathcal{F}\varphi = -i\varphi$, where *i* is the imaginary unit.
- (f) (6p) Which of the following statements are true:
 - (1) $\mathcal{F}(L^2(\mathbb{R})) \subseteq C_0(\mathbb{R})$
 - (2) $\mathcal{S}(\mathbb{R})$ is dense in $\mathcal{S}^*(\mathbb{R})$
 - (3) $L^p(\mathbb{R}) \subseteq \mathcal{S}^*(\mathbb{R})$ for every $p \in [1, \infty]$.
 - (4) $H^{s}(\mathbb{R}^{d}) \subseteq C_{0}(\mathbb{R}^{d})$ when s > d/2.
 - (5) $C^1(\mathbb{R}) \subseteq H^2(\mathbb{R}).$

Problem 2: (24p) Let R denote a real number such that $0 < R < \infty$ and define

$$f_n(x) = \begin{cases} n \cos(nx) & \text{for } |x| \le R, \\ 0, & \text{for } |x| > R. \end{cases}$$

For which numbers R, if any, is it the case that $f_n \to 0$ in $\mathcal{S}^*(\mathbb{R})$? Please motivate your answer.

Problem 3: (20p)

- (a) (5p) State the definition of a σ -algebra.
- (b) (5p) State the definition of a measure.
- (c) (10p) Let (X, \mathcal{A}, μ) denote a measure space. Suppose that $\Omega_1, \Omega_2 \in \mathcal{A}$. Prove directly from the axioms that $\mu(\Omega_1 \cup \Omega_2) \leq \mu(\Omega_1) + \mu(\Omega_2)$. Give a condition for when equality occurs.

Problem 4: (20p) Set $X = [1, \infty)$, let \mathcal{A} denote the power set on X, let $\mathbb{N} = \{0, 1, 2, 3, ...\}$ denote the natural numbers, and define a measure μ on \mathcal{A} via

$$\mu(\Omega) = \sum_{j \in \Omega \cap \mathbb{N}} 2^{-j}.$$

Which of the following functions are Lebesgue integrable with respect to (X, \mathcal{A}, μ) ? For the functions that are Lebesgue integrable, state the value of $\int_X f d\mu$. Please motivate briefly.

- (a) $f_1(x) = e^x$
- (b) $f_2(x) = e^{-x}$
- (c) $f_3(x) = e^x 9e^{-x}$
- (d) $f_4(x) = e^x \cos(\pi x)$