## APPM5450 - Applied Analysis: Section exam 3

8:30-9:50, April 24, 2013. Closed books.
Problem 1: (36p) No motivation required.
(a) (6p) Define $T \in \mathcal{S}^{*}\left(\mathbb{R}^{d}\right)$ via $\langle T, \varphi\rangle=\varphi(0)$. What is $\hat{T}$ ?
(b) (6p) Define $T \in \mathcal{S}^{*}\left(\mathbb{R}^{d}\right)$ via $\langle T, \varphi\rangle=\varphi(0)$. State for which $s \in \mathbb{R}$ (if any) we have

$$
\int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{s}|\hat{T}(t)|^{2} d t<\infty .
$$

(Recall that this is the definition for when $T \in H^{s}\left(\mathbb{R}^{d}\right)$.
(c) (6p) Define $T \in \mathcal{S}^{*}(\mathbb{R})$ via $T(x)=\chi_{[0,1]}(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1]\end{array}\right.$. What is $\hat{T}$ ?
(d) (6p) Define $T \in \mathcal{S}^{*}(\mathbb{R})$ via $T(x)=\operatorname{sign}(x)=\left\{\begin{array}{rl}1 & x>0 \\ -1 & x<0\end{array}\right.$. What is $\hat{T}$ ?
(e) (6p) Give an example of a non-zero Schwartz function $\varphi \in \mathcal{S}(\mathbb{R})$ such that $\mathcal{F} \varphi=-i \varphi$, where $i$ is the imaginary unit.
(f) (6p) Which of the following statements are true:
(1) $\mathcal{F}\left(L^{2}(\mathbb{R})\right) \subseteq C_{0}(\mathbb{R})$
(2) $\mathcal{S}(\mathbb{R})$ is dense in $\mathcal{S}^{*}(\mathbb{R})$
(3) $L^{p}(\mathbb{R}) \subseteq \mathcal{S}^{*}(\mathbb{R})$ for every $p \in[1, \infty]$.
(4) $H^{s}\left(\mathbb{R}^{d}\right) \subseteq C_{0}\left(\mathbb{R}^{d}\right)$ when $s>d / 2$.
(5) $C^{1}(\mathbb{R}) \subseteq H^{2}(\mathbb{R})$.

## Solution:

(a) $\langle\hat{T}, \varphi\rangle=\langle T, \hat{\varphi}\rangle=\hat{\varphi}(0)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i 0 x} \varphi(x) d x$ so $\hat{T}=1 / \sqrt{2 \pi}$.
(b) $\int_{\mathbb{R}^{d}}\left(1+|t|^{2}\right)^{s}|\hat{T}(t)|^{2} d t \sim \int_{0}^{\infty}\left(1+r^{2}\right)^{s} r^{d-1} d r$ which is finite iff $2 s+d-1<-1$, which is to say, if $s<-d / 2$.
(c) Note that $T \in L^{1}$ so $\hat{T}(t)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-i x t} d x=\frac{1}{\sqrt{2 \pi}}\left[\frac{1}{-i t} e^{-i x t}\right]_{0}^{1}=\frac{1}{\sqrt{2 \pi} i t}\left(1-e^{-i x}\right)$.
(d) $\hat{T}=\frac{-2 i}{\sqrt{\pi}}$ P.V. $\left(\frac{1}{t}\right)$, see Problem 11.22 on Homework 11.

To get a clue of what the solution might be, note that $T^{\prime}=2 \delta$. Then $i t \hat{T}(t)=2 / \sqrt{2 \pi}$ which would indicate $\hat{T}(t) \sim i / t$.
(e) For instance, $\varphi(x)=x e^{-x^{2} / 2}$. (See material on eigen-vectors of $\mathcal{F}$ in lecture notes.) Note that in the exam actually administered, the problem stated was to find $\varphi$ such that $\mathcal{F} \varphi=i \varphi$. This is harder since the simplest solution is a third degree polynomial times $e^{-x^{2} / 2}$. In consequence, this problem was graded very generously. Any hint towards Hermite functions gave almost full points.
(f) The answers are:
(1) FALSE - note that $\mathcal{F}\left(L^{2}\right)=L^{2}$ and $L^{2}$-functions are not necessarily continuous.
(2) TRUE.
(3) TRUE - recall that any $L^{p}$ function is "tempered" by virtue of the Hölder inequality.
(4) TRUE - this is the simplest form of the Sobolev embedding theorem.
(5) FALSE - for instance, consider $f(x)=1$, then $f \in C^{1}$ but $f \notin H^{2}$.

Problem 2: (24p) Let $R$ denote a real number such that $0<R<\infty$ and define

$$
f_{n}(x)= \begin{cases}n \cos (n x) & \text { for }|x| \leq R \\ 0, & \text { for }|x|>R\end{cases}
$$

For which numbers $R$, if any, is it the case that $f_{n} \rightarrow 0$ in $\mathcal{S}^{*}(\mathbb{R})$ ? Please motivate your answer.

Solution: Fix $\varphi \in \mathcal{S}(\mathbb{R})$. Then

$$
\begin{aligned}
\left\langle f_{n}, \varphi\right\rangle & =\int_{-R}^{R} n \cos (n x) \varphi(x) d x=[\sin (n x) \varphi(x)]_{-R}^{R}-\int_{-R}^{R} \sin (n x) \varphi^{\prime}(x) d x \\
& =\underbrace{[\sin (n x) \varphi(x)]_{-R}^{R}}_{=: I_{1}^{(n)}}+\underbrace{\left[\frac{\cos (n x)}{n} \varphi^{\prime}(x)\right]_{-R}^{R}}_{=: I_{2}^{(n)}}-\underbrace{\int_{-R}^{R} \frac{\cos (n x)}{n} \varphi^{\prime \prime}(x) d x}_{=I_{3}^{(n)}}
\end{aligned}
$$

We see that for any $R$, we have

$$
\left|I_{2}^{(n)}\right| \leq \frac{\left|\varphi^{\prime}(-R)\right|+\left|\varphi^{\prime}(R)\right|}{n} \leq \frac{2\left\|\varphi^{\prime}\right\|_{\mathrm{u}}}{n} \leq \frac{2\|\varphi\|_{1,0}}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

and also

$$
\left|I_{3}^{(n)}\right| \leq \frac{1}{n} \int_{-R}^{R}\left|\varphi^{\prime \prime}(x)\right| d x \leq \frac{1}{n} \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{-1}\left(1+x^{2}\right)\left|\varphi^{\prime \prime}(x)\right| d x \leq \frac{1}{n} \pi\|\varphi\|_{2,2} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

So the question reduces to whether $I_{1}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$. We see that

$$
I_{1}^{(n)}=\sin (n R)(\varphi(R)+\varphi(-R))
$$

Case 1: If $R$ is a multiple of $\pi$, then $I_{1}^{(n)}=0$ for every $n$, and so $f_{n} \rightarrow 0$ in $\mathcal{S}^{*}$.
Case 2: If $R$ is not a multiple of $\pi$, then $I_{1}^{(n)}$ will not converge for any $\varphi$ such that $\varphi(R)+\varphi(-R) \neq 0$, so in this case $\left(f_{n}\right)$ is not convergent.

Problem 3: (20p)
(a) (5p) State the definition of a $\sigma$-algebra.
(b) (5p) State the definition of a measure.
(c) (10p) Let $(X, \mathcal{A}, \mu)$ denote a measure space. Suppose that $\Omega_{1}, \Omega_{2} \in \mathcal{A}$. Prove directly from the axioms that $\mu\left(\Omega_{1} \cup \Omega_{2}\right) \leq \mu\left(\Omega_{1}\right)+\mu\left(\Omega_{2}\right)$. Give a condition for when equality occurs.

Solution: Set

$$
\begin{aligned}
& \Psi_{1}=\Omega_{1} \backslash \Omega_{2}=\Omega_{1} \cap \Omega_{2}^{\mathrm{c}}, \\
& \Psi_{2}=\Omega_{2} \backslash \Omega_{1}=\Omega_{2} \cap \Omega_{1}^{\mathrm{c}}, \\
& \Psi_{3}=\Omega_{1} \cap \Omega_{2} .
\end{aligned}
$$

We see from the axioms of a $\sigma$-algebra that $\Psi_{1}, \Psi_{2}, \Psi_{3} \in \mathcal{A}$.
Now observe that
$\mu\left(\Omega_{1} \cup \Omega_{2}\right) \stackrel{(1)}{=} \mu\left(\Psi_{1} \cup \Psi_{2} \cup \Psi_{3}\right) \stackrel{(2)}{=} \mu\left(\Psi_{1}\right)+\mu\left(\Psi_{2}\right)+\mu\left(\Psi_{3}\right) \stackrel{(3)}{\leq} \mu\left(\Psi_{1}\right)+2 \mu\left(\Psi_{2}\right)+\mu\left(\Psi_{3}\right) \stackrel{(4)}{=} \mu\left(\Omega_{1}\right)+\mu\left(\Omega_{2}\right)$.
The steps are justified as follows:
(1) Since $\Omega_{1} \cup \Omega_{2}=\Psi_{1} \cup \Psi_{2} \cup \Psi_{3}$.
(2) The sets $\Psi_{1}, \Psi_{2}, \Psi_{3}$ are mutually disjoint, so the axiom for additivity of the measure applies.
(3) Since $\mu\left(\Psi_{2}\right) \geq 0$ by an axiom for measures.
(4) Since $\Omega_{1}=\Psi_{1} \cup \Psi_{2}$, since $\Omega_{2}=\Psi_{2} \cup \Psi_{3}$, and since $\Psi_{1} \cap \Psi_{2}=\emptyset$ and $\Psi_{2} \cap \Psi_{3}=\emptyset$.

We see that the inequality (3) is a strict inequality unless $\mu\left(\Psi_{2}\right)$ is zero. Consequently:

$$
\mu\left(\Omega_{1} \cup \Omega_{2}\right)=\mu\left(\Omega_{1}\right)+\mu\left(\Omega_{2}\right) \quad \Leftrightarrow \quad \mu\left(\Omega_{1} \cap \Omega_{2}\right)=0 .
$$

Problem 4: (20p) Set $X=[1, \infty)$, let $\mathcal{A}$ denote the power set on $X$, let $\mathbb{N}=\{0,1,2,3, \ldots\}$ denote the natural numbers, and define a measure $\mu$ on $\mathcal{A}$ via

$$
\mu(\Omega)=\sum_{j \in \Omega \cap \mathbb{N}} 2^{-j}
$$

Which of the following functions are Lebesgue integrable with respect to $(X, \mathcal{A}, \mu)$ ? For the functions that are Lebesgue integrable, state the value of $\int_{X} f d \mu$. Please motivate briefly.
(a) $f_{1}(x)=e^{x}$
(b) $f_{2}(x)=e^{-x}$
(c) $f_{3}(x)=e^{x}-9 e^{-x}$
(d) $f_{4}(x)=e^{x} \cos (\pi x)$

Solution: Since $\mathcal{A}$ is the power set, every function on this measure space is measurable.
(a) $f_{1}$ is non-negative so it is certainly integrable. We find

$$
\int_{X} f_{1} d \mu=\sum_{j=1}^{\infty} e^{j} 2^{-j}=\sum_{j=1}^{\infty}(e / 2)^{j}=\infty
$$

since $e / 2 \geq 1$.
(b) $f_{2}$ is non-negative so it is certainly integrable. We find

$$
\int_{X} f_{2} d \mu=\sum_{j=1}^{\infty} e^{-j} 2^{-j}=\sum_{j=1}^{\infty}(1 / 2 e)^{j}=\frac{1 / 2 e}{1-1 / 2 e}=\frac{1}{2 e-1} .
$$

(c) Set $t=\log (3)$. Then $f_{3}=f_{+}-f_{-}$where $f_{-}=f_{3} \chi_{[0, t]}$ and $f_{+}=f_{3} \chi_{[t, \infty)}$. We find that

$$
\int_{x} f_{-} d \mu=(1 / 2)\left(e-9 e^{-1}\right)
$$

and that

$$
\int_{x} f_{+} d \mu=\sum_{j=2}^{\infty} 2^{-j}\left(e^{j}-9 e^{-j}\right)=\infty .
$$

Since only one of the two integrals is infinite, we find that $f_{3}$ is integrable, and

$$
\int_{x} f_{3} d \mu=\infty-(1 / 2)\left(e-9 e^{-1}\right)=\infty
$$

(d) Decompose $f_{4}=f_{+}-f_{-}$with $f_{ \pm} \geq 0$ as usual. We find that

$$
\int_{x} f_{+} d \mu=\sum_{j=2,4,6,8, \ldots} 2^{-j} e^{j}=\infty,
$$

and also

$$
\int_{x} f_{-} d \mu=\sum_{j=1,3,5,7, \ldots} 2^{-j} e^{j}=\infty .
$$

Since both $f_{+}$and $f_{-}$have infinite integrals, $f_{4}$ is not Lebesgue integrable.

