8:30 - 9:50, April 24, 2013. Closed books.

Problem 1: (36p) No motivation required.

- (a) (6p) Define $T \in \mathcal{S}^*(\mathbb{R}^d)$ via $\langle T, \varphi \rangle = \varphi(0)$. What is \hat{T} ?
- (b) (6p) Define $T \in \mathcal{S}^*(\mathbb{R}^d)$ via $\langle T, \varphi \rangle = \varphi(0)$. State for which $s \in \mathbb{R}$ (if any) we have

$$\int_{\mathbb{R}^d} (1+|t|^2)^s \, |\hat{T}(t)|^2 \, dt < \infty.$$

(Recall that this is the definition for when $T \in H^{s}(\mathbb{R}^{d})$.

(c) (6p) Define
$$T \in \mathcal{S}^*(\mathbb{R})$$
 via $T(x) = \chi_{[0,1]}(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & x \notin [0,1] \end{cases}$. What is \hat{T} ?

- (d) (6p) Define $T \in \mathcal{S}^*(\mathbb{R})$ via $T(x) = \operatorname{sign}(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$. What is \hat{T} ?
- (e) (6p) Give an example of a non-zero Schwartz function $\varphi \in \mathcal{S}(\mathbb{R})$ such that $\mathcal{F}\varphi = -i\varphi$, where *i* is the imaginary unit.
- (f) (6p) Which of the following statements are true:
 - (1) $\mathcal{F}(L^2(\mathbb{R})) \subseteq C_0(\mathbb{R})$
 - (2) $\mathcal{S}(\mathbb{R})$ is dense in $\mathcal{S}^*(\mathbb{R})$
 - (3) $L^p(\mathbb{R}) \subseteq \mathcal{S}^*(\mathbb{R})$ for every $p \in [1, \infty]$.
 - (4) $H^s(\mathbb{R}^d) \subseteq C_0(\mathbb{R}^d)$ when s > d/2.
 - (5) $C^1(\mathbb{R}) \subseteq H^2(\mathbb{R}).$

Solution:

(a)
$$\langle \hat{T}, \varphi \rangle = \langle T, \hat{\varphi} \rangle = \hat{\varphi}(0) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i0x} \varphi(x) \, dx$$
 so $\hat{T} = 1/\sqrt{2\pi}$.

- (b) $\int_{\mathbb{R}^d} (1+|t|^2)^s |\hat{T}(t)|^2 dt \sim \int_0^\infty (1+r^2)^s r^{d-1} dr$ which is finite iff 2s+d-1<-1, which is to say, if s<-d/2.
- (c) Note that $T \in L^1$ so $\hat{T}(t) = \frac{1}{\sqrt{2\pi}} \int_0^1 e^{-ixt} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{1}{-it} e^{-ixt} \right]_0^1 = \frac{1}{\sqrt{2\pi} it} (1 e^{-ix}).$
- (d) $\hat{T} = \frac{-2i}{\sqrt{\pi}}$ P.V. $(\frac{1}{t})$, see Problem 11.22 on Homework 11.

To get a clue of what the solution might be, note that $T' = 2\delta$. Then $it \hat{T}(t) = 2/\sqrt{2\pi}$ which would indicate $\hat{T}(t) \sim i/t$.

- (e) For instance, $\varphi(x) = x e^{-x^2/2}$. (See material on eigen-vectors of \mathcal{F} in lecture notes.) Note that in the exam actually administered, the problem stated was to find φ such that $\mathcal{F}\varphi = i\varphi$. This is harder since the simplest solution is a third degree polynomial times $e^{-x^2/2}$. In consequence, this problem was graded very generously. Any hint towards Hermite functions gave almost full points.
- (f) The answers are:
 - (1) FALSE note that $\mathcal{F}(L^2) = L^2$ and L^2 -functions are not necessarily continuous. (2) TRUE.
 - (3) TRUE recall that any L^p function is "tempered" by virtue of the Hölder inequality.
 - (4) TRUE this is the simplest form of the Sobolev embedding theorem.
 - (5) FALSE for instance, consider f(x) = 1, then $f \in C^1$ but $f \notin H^2$.

Problem 2: (24p) Let R denote a real number such that $0 < R < \infty$ and define

$$f_n(x) = \begin{cases} n \cos(nx) & \text{for } |x| \le R, \\ 0, & \text{for } |x| > R. \end{cases}$$

For which numbers R, if any, is it the case that $f_n \to 0$ in $\mathcal{S}^*(\mathbb{R})$? Please motivate your answer.

Solution: Fix $\varphi \in \mathcal{S}(\mathbb{R})$. Then $\langle f_n, \varphi \rangle = \int_{-R}^{R} n \cos(nx) \varphi(x) \, dx = [\sin(nx) \varphi(x)]_{-R}^{R} - \int_{-R}^{R} \sin(nx) \varphi'(x) \, dx$ $= \underbrace{[\sin(nx) \varphi(x)]_{-R}^{R}}_{=:I_1^{(n)}} + \underbrace{\left[\frac{\cos(nx)}{n} \varphi'(x)\right]_{-R}^{R}}_{=:I_2^{(n)}} - \underbrace{\int_{-R}^{R} \frac{\cos(nx)}{n} \varphi''(x) \, dx}_{=:I_3^{(n)}}$

We see that for any R, we have

$$I_{2}^{(n)}| \leq \frac{|\varphi'(-R)| + |\varphi'(R)|}{n} \leq \frac{2||\varphi'||_{\mathbf{u}}}{n} \leq \frac{2||\varphi||_{1,0}}{n} \to 0 \qquad \text{as } n \to \infty,$$

and also

$$|I_3^{(n)}| \le \frac{1}{n} \int_{-R}^{R} |\varphi''(x)| \, dx \le \frac{1}{n} \int_{-\infty}^{\infty} (1+x^2)^{-1} \, (1+x^2) |\varphi''(x)| \, dx \le \frac{1}{n} \, \pi \, ||\varphi||_{2,2} \to 0 \qquad \text{as } n \to \infty.$$

So the question reduces to whether $I_1^{(n)} \to 0$ as $n \to \infty$. We see that

$$I_1^{(n)} = \sin(nR) \left(\varphi(R) + \varphi(-R)\right).$$

Case 1: If R is a multiple of π , then $I_1^{(n)} = 0$ for every n, and so $f_n \to 0$ in \mathcal{S}^* .

Case 2: If R is not a multiple of π , then $I_1^{(n)}$ will not converge for any φ such that $\varphi(R) + \varphi(-R) \neq 0$, so in this case (f_n) is not convergent.

Problem 3: (20p)

- (a) (5p) State the definition of a σ -algebra.
- (b) (5p) State the definition of a measure.
- (c) (10p) Let (X, \mathcal{A}, μ) denote a measure space. Suppose that $\Omega_1, \Omega_2 \in \mathcal{A}$. Prove directly from the axioms that $\mu(\Omega_1 \cup \Omega_2) \leq \mu(\Omega_1) + \mu(\Omega_2)$. Give a condition for when equality occurs.

Solution: Set

$$\begin{split} \Psi_1 = &\Omega_1 \backslash \Omega_2 = \Omega_1 \cap \Omega_2^c, \\ \Psi_2 = &\Omega_2 \backslash \Omega_1 = \Omega_2 \cap \Omega_1^c, \\ \Psi_3 = &\Omega_1 \cap \Omega_2. \end{split}$$

We see from the axioms of a σ -algebra that $\Psi_1, \Psi_2, \Psi_3 \in \mathcal{A}$.

Now observe that

 $\mu(\Omega_1 \cup \Omega_2) \stackrel{(1)}{=} \mu(\Psi_1 \cup \Psi_2 \cup \Psi_3) \stackrel{(2)}{=} \mu(\Psi_1) + \mu(\Psi_2) + \mu(\Psi_3) \stackrel{(3)}{\leq} \mu(\Psi_1) + 2\mu(\Psi_2) + \mu(\Psi_3) \stackrel{(4)}{=} \mu(\Omega_1) + \mu(\Omega_2).$ The steps are justified as follows:

- (1) Since $\Omega_1 \cup \Omega_2 = \Psi_1 \cup \Psi_2 \cup \Psi_3$.
- (2) The sets Ψ_1 , Ψ_2 , Ψ_3 are mutually disjoint, so the axiom for additivity of the measure applies.
- (3) Since $\mu(\Psi_2) \ge 0$ by an axiom for measures.
- (4) Since $\Omega_1 = \Psi_1 \cup \Psi_2$, since $\Omega_2 = \Psi_2 \cup \Psi_3$, and since $\Psi_1 \cap \Psi_2 = \emptyset$ and $\Psi_2 \cap \Psi_3 = \emptyset$.

We see that the inequality (3) is a strict inequality unless $\mu(\Psi_2)$ is zero. Consequently:

$$\mu(\Omega_1 \cup \Omega_2) = \mu(\Omega_1) + \mu(\Omega_2) \qquad \Leftrightarrow \qquad \mu(\Omega_1 \cap \Omega_2) = 0.$$

Problem 4: (20p) Set $X = [1, \infty)$, let \mathcal{A} denote the power set on X, let $\mathbb{N} = \{0, 1, 2, 3, ...\}$ denote the natural numbers, and define a measure μ on \mathcal{A} via

$$\mu(\Omega) = \sum_{j \in \Omega \cap \mathbb{N}} 2^{-j}.$$

Which of the following functions are Lebesgue integrable with respect to (X, \mathcal{A}, μ) ? For the functions that are Lebesgue integrable, state the value of $\int_X f d\mu$. Please motivate briefly.

- (a) $f_1(x) = e^x$
- (b) $f_2(x) = e^{-x}$
- (c) $f_3(x) = e^x 9e^{-x}$
- (d) $f_4(x) = e^x \cos(\pi x)$

Solution: Since \mathcal{A} is the power set, every function on this measure space is measurable.

(a) f_1 is non-negative so it is certainly integrable. We find

$$\int_X f_1 \, d\mu = \sum_{j=1}^\infty e^j 2^{-j} = \sum_{j=1}^\infty (e/2)^j = \infty$$

since $e/2 \ge 1$.

(b) f_2 is non-negative so it is certainly integrable. We find

$$\int_X f_2 \, d\mu = \sum_{j=1}^\infty e^{-j} 2^{-j} = \sum_{j=1}^\infty (1/2e)^j = \frac{1/2e}{1-1/2e} = \frac{1}{2e-1}.$$

(c) Set $t = \log(3)$. Then $f_3 = f_+ - f_-$ where $f_- = f_3 \chi_{[0,t]}$ and $f_+ = f_3 \chi_{[t,\infty)}$. We find that $\int_x f_- d\mu = (1/2) (e - 9 e^{-1})$

and that

$$\int_{x} f_{+} d\mu = \sum_{j=2}^{\infty} 2^{-j} \left(e^{j} - 9 e^{-j} \right) = \infty.$$

Since only one of the two integrals is infinite, we find that f_3 is integrable, and

$$\int_x f_3 \, d\mu = \infty - (1/2) \, (e - 9 \, e^{-1}) = \infty.$$

(d) Decompose $f_4 = f_+ - f_-$ with $f_{\pm} \ge 0$ as usual. We find that

$$\int_{x} f_{+} d\mu = \sum_{j=2, 4, 6, 8, \dots} 2^{-j} e^{j} = \infty,$$

and also

$$\int_{x} f_{-} d\mu = \sum_{j=1,3,5,7,\dots} 2^{-j} e^{j} = \infty.$$

Since both f_+ and f_- have infinite integrals, f_4 is not Lebesgue integrable.