
Homework set 3 — Solutions — APPM5450, Spring 2014

Problem 8.6: Suppose that U is an isometric isomorphism. This by definition implies that U
is bijective, so all we need to prove is that it preserves the inner product. However, this follows
directly from the polarization identity (equation (6.5) in the text), and the fact that the norm is
preserved.

Problem 1: Let H be a Hilbert space, and let (φn)
∞
n=1 denote an orthonormal basis for H. Given

a bounded sequence of complex number (λn)
∞
n=1, define the operator A by setting

Au =

∞∑
n=1

λn φn ⟨φn, u⟩.

(a) Prove that ||A|| = supn |λn|.

(b) Prove that A∗u =
∑∞

n=1 λ̄nφn ⟨φn, u⟩. Conclude that A is self-adjoint iff all λn’s are real.
When is A skew-symmetric? When is A non-negative / positive / coercive?

Note: This problem is an entirely cosmetic generalization of the example we did on the black-board
with H = ℓ2(N), and

A(x1, x2, x3, . . . ) = (λ1x1, λ2x2, λ3x3, . . . ).

Solution: (a) Set M = supn |λn|. Then by Parseval

||Au||2 =
∞∑
n=1

|λn⟨φn, u⟩|2 ≤
∞∑
n=1

M2|⟨φn, u⟩|2 = M2||u||2.

Conversely, suppose M = limj→∞ |λnj |. Then
||A|| = sup

||u||=1
||Au|| ≥ lim sup

j→∞
||Aφnj || = lim sup

j→∞
|λnj | = M.

(b) We find

⟨Au, v⟩ = ⟨
∞∑
n=1

λn φn ⟨φn, u⟩, v⟩ =
∞∑
n=1

λn⟨φn, u⟩⟨φn , v⟩

=

∞∑
n=1

λn⟨u, φn⟩⟨φn , v⟩ = ⟨u,
∞∑
n=1

λnφn⟨φn , v⟩︸ ︷︷ ︸
=A∗v

⟩ = ⟨u,A∗v⟩.

It follows that

A self-adjoint ⇔ λ̄j = λj ∀j
A skew-adjoint ⇔ λ̄j = −λj ∀j
A non-negative ⇔ λj ∈ [0,∞) ∀j

A positive ⇔ λj ∈ (0,∞) ∀j
A coercive ⇔ there is a c > 0 such that λj ∈ [c,∞) ∀j

1



2

Problem 2: Consider the Hilbert space H = L2([−π, π]), and the operator A ∈ B(H) defined by
[Au](x) = |x|u(x). Prove that A is self-adjoint and positive, but not coercive. Prove that

⟨u, v⟩A = ⟨Au, v⟩
is an inner product on H, but that the topology generated by (the norm generated by) this inner
product is not equivalent to the topology generated by the L2-norm.

Solution: Note that

⟨Au, u⟩ =
∫ π

−π
|x|u(x)u(x) dx =

∫ π

−π
|x| |u(x)|2 dx ≥ 0,

which immediate shows that A is non-negative.

To prove that A is positive, suppose that ⟨Au, u⟩ = 0. Then |x| |u(x)|2 = 0 for all x ̸= 0, which
is to say, u is the zero function in L2. (To be rigorous, ⟨Au, u⟩ = 0 implies that |x| |u(x)|2 = 0
except for on a “set of measure zero”. We will return to this point later in the course once we have
covered measure theory.)

Verifying that ⟨·, ·⟩A is an inner product is straight-forward.

To prove that the norms || · ||A and || · || are not equivalent, set

un(x) =

{ √
n/2 when |x| ≤ 1/n

0 when |x| > 1/n.

It is easily verified that ||un|| = 1, while ||un||A ≤ 1/
√
n. It follows that

inf
u̸=0

||u||A
||u||

≤ inf
n

||un||A
||un||

≤ inf
n

1/
√
n

1
= 0.

Problem 3: Set H = ℓ2(Z) and let R denote the right-shift operator (so that if y = Rx, then
yn = xn−1). Construct R∗. Prove that RR∗ = R∗R = I, which is to say that R is “unitary.” (Is
either the right or the left-shift operator on ℓ2(N) unitary?)

Solution: This should be simple.

Problem 4: Consider the Hilbert space L2(T). Let k denote a continuous function on T2 that
takes on complex values. Let A denote the operator [Au](x) =

∫
T k(x, y)u(y) dy. Prove that

[A∗u](x) =
∫
T k(y, x)u(y) dy. Conclude that A is self-adjoint iff k(x, y) = k(y, x) ∀ x, y ∈ T.

Solution: Suppose that u, v ∈ P (i.e. they are finite linear combinations of trig functions). Then

⟨Au, v⟩ =
∫
T

∫
T
k(x, y)u(y) dy v(x) dx =

∫
T×T

k(x, y)u(y) v(x) dA =

∫
T
u(y)

∫
T
k(x, y) v(x) dx︸ ︷︷ ︸

=[A∗v](y)

dy.

Since we have proven the relationship on a dense subset of L2, and since the inner product is
continuous, the relationship must hold on the entire set.


