From the textbook: 11.5, 11.9, 11.15.

Problem 1: We say that a sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is an approximate identity if
(1) $\varphi_{n} \in C\left(\mathbb{R}^{d}\right), \quad \forall n$,
(2) $\varphi_{n}(x) \geq 0, \quad \forall n, x$,
(3) $\int_{\mathbb{R}^{d}} \varphi_{n}(x) d x=1, \quad \forall n$,
(4) $\forall \varepsilon>0, \quad \int_{|x| \geq \varepsilon} \varphi_{n}(x) d x \rightarrow 0$ as $n \rightarrow \infty$.
(a) Do the conditions imply that $\varphi_{n} \in \mathcal{S}^{*}$?
(b) Assuming that $\varphi_{n} \in \mathcal{S}^{*}$, prove that $\varphi_{n} \rightarrow \delta$ in \mathcal{S}^{*}.

Problem 2: Compute the Fourier transforms of $f(x)=\chi_{[-R, R]}(x)$ and $f(x)=e^{-a|x|}$ by simply evaluating the formula

$$
\hat{f}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i t x} f(x) d x
$$

The answers are given in examples 11.32 and 11.33 in the text book.

Problem 3 (optional): Let k be a positive integer. Prove that there exist numbers c_{k} and C_{k} such that $0<c_{k} \leq C_{k}<\infty$, and

$$
\begin{equation*}
c_{k}\left(1+|x|^{k}\right) \leq\left(1+|x|^{2}\right)^{k / 2} \leq C_{k}\left(1+|x|^{k}\right), \quad \forall x \in \mathbb{R}^{d} . \tag{1}
\end{equation*}
$$

Check to see if you can readily adapt your proof to also prove the existence of numbers b_{k} and B_{k} such that $0<b_{k} \leq B_{k}<\infty$ such that

$$
\begin{equation*}
b_{k}(1+|x|)^{k} \leq\left(1+|x|^{2}\right)^{k / 2} \leq B_{k}(1+|x|)^{k}, \quad \forall x \in \mathbb{R}^{d} . \tag{2}
\end{equation*}
$$

Note 1: The existence of inequalities such as (1) and (2) are routinely used (generally without even commenting on it) to replace the growth factor $\left(1+|x|^{2}\right)^{k / 2}$ in the norms $\|\cdot\|_{\alpha, k}$ by either $\left(1+|x|^{k}\right)$ or $(1+|x|)^{k}$, whenever convenient.

Note 2: If you have time, you may find it interesting to see what happens to the numbers b_{k}, B_{k}, c_{k}, C_{k} as k grows large. (This is easily done using Matlab.)

