Homework set 10 - APPM5450, Spring 2013 - Solution to 11.16 convolution

We will prove that for $\varphi \in \mathcal{S}(\mathbb{R})$ and $T=\mathcal{S}^{*}(\mathbb{R})$, we have

$$
\mathcal{F}[\varphi * T]=\sqrt{2 \pi} \hat{\varphi} \hat{T} .
$$

First note that this part of the problem is far harder than the other ones.

The trickiness is due to the indirect definition $[\varphi * T](x)=\left\langle T, R \tau_{x} \varphi\right\rangle$. Note also that since $\varphi * T$ is not necessarily in L^{1}, we have to define $\mathcal{F}[\varphi * T]$ in a distributional sense. So fix $\psi \in \mathcal{S}$. Then

$$
\begin{aligned}
\langle\mathcal{F}[\varphi * T], \psi\rangle & \stackrel{(1)}{=}\langle\varphi * T, \hat{\psi}\rangle \stackrel{(2)}{=} \int_{\mathbb{R}}\left\langle T, R \tau_{x} \varphi\right\rangle \hat{\psi}(x) d x \stackrel{(3)}{=}\left\langle T, \int_{\mathbb{R}} \varphi(x-y) \hat{\psi}(x) d x\right\rangle \\
& \stackrel{(4)}{=}\langle T,(R \varphi) * \hat{\psi}\rangle \stackrel{(5)}{=}\left\langle T, \mathcal{F}\left(\mathcal{F}^{*}((R \varphi) * \hat{\psi})\right)\right\rangle \stackrel{(6)}{=}\langle T, \mathcal{F}(\sqrt{2 \pi} \hat{\varphi} \psi)\rangle \\
& \stackrel{(7)}{=}\langle\hat{T}, \sqrt{2 \pi} \hat{\varphi} \psi\rangle \stackrel{(8)}{=}\langle\sqrt{2 \pi} \hat{\varphi} \hat{T}, \psi\rangle
\end{aligned}
$$

Some comments on each step:
(1) Simply the definition of the distributional Fourier transform.
(2) Use that $\varphi * T$ is a "plain" tempered function, and $\hat{\psi} \in \mathcal{S}(\mathbb{R})$.
(3) Here is des Pudels Kern. We need to move the integral inside the $\mathcal{S}^{*} \times \mathcal{S}$ pairing. First observe that the integrand is smooth and rapidly decaying, so Riemann sums converge nicely. Consider a Riemann sum on the interval $[-n, n]$, with spacing $1 / n$. Then

$$
\begin{aligned}
\int_{\mathbb{R}}\left\langle T, R \tau_{x} \varphi\right\rangle \hat{\psi}(x) d x & =\lim _{n \rightarrow \infty} \sum_{j=-n^{2}}^{n^{2}} \frac{1}{n}\left\langle T, R \tau_{j / n} \varphi\right\rangle \hat{\psi}(j / n) \\
& =\lim _{n \rightarrow \infty}\left\langle T, \sum_{j=-n^{2}}^{n^{2}} \frac{1}{n} \varphi(j / n-y) \hat{\psi}(j / n)\right\rangle .
\end{aligned}
$$

In order to justify taking the limit inside the $\mathcal{S}^{*} \times \mathcal{S}$ pairing, we invoke the continuity of T, and then "only" need to prove that

$$
\sum_{j=-n^{2}}^{n^{2}} \frac{1}{n} \varphi(j / n-\cdot) \hat{\psi}(j / n) \mapsto \int_{\mathbb{R}} \varphi(x-\cdot) \psi(x) d x, \quad \text { as } n \rightarrow \infty
$$

where the convergence is in \mathcal{S}. We leave the details as an exercise. \because
(4) Observe that the function $y \mapsto \int \varphi(x-y) \hat{\psi}(x) d x$ is the convolution between $R \varphi$ and $\hat{\psi}$.
(5) Use that $\mathcal{F F}^{*}=I$ on \mathcal{S}.
(6) Use that $\mathcal{F}^{*}(f * g)=\sqrt{2 \pi}\left(\mathcal{F}^{*} f\right)\left(\mathcal{F}^{*} g\right)$ for any $f, g \in \mathcal{S}$, and that $\mathcal{F}^{*} R=\mathcal{F}$.
(7) Simply the definition of the distributional Fourier transform.
(8) Definition of multiplication by a Schwartz function.

