
APPM5450 — Applied Analysis: Section exam 1 — Solutions 8:30 – 9:50, February 10,
2014. Closed books.

Problem 1: Consider the Hilbert space H = ℓ2(N), and the operator

A(x1, x2, x3, . . . ) = (λ1x1, λ2x2, λ3x3, . . . ),

where (λn)
∞
n=1 is a bounded sequence of complex numbers.

(a) Prove that ||A|| = sup
n

|λn|.

(b) Give minimal conditions on the numbers λn that ensure that A is, respectively:
(i) self-adjoint,
(ii) non-negative,
(iii) positive,
(iv) coercive.
Motivate your claims.

Solution:

(a) Set M = supn |λn|. Then

||Ax||2 =
∞∑
n=1

|λnxn|2 ≤
∞∑
n=1

M2|xn|2 = M2||x||2.

Conversely, let en denote the n’th canonical unit vector. Then

||A|| = sup
||x||=1

||Ax|| ≥ ||Aen|| = |λn|.

Take the supremum to get ||A|| ≥ supn |λn| = M .

(b) We find

⟨Ax, y⟩ =
∑
n

λnxn yn =
∑
n

xn λnyn = ⟨x,A∗y⟩,

where
A∗(x1, x2, x3, . . . ) = (λ̄1x1, λ̄2x2, λ̄3x3, . . . ),

It follows that A is self-adjoint iff every λj is purely real.

Next suppose that A is S-A, then ⟨Ax, x⟩ =
∞∑
n=1

|xn|2.

It follows immediately that A is non-negative iff λn ≥ 0 for every n, and that A is positive iff
λn > 0 for every n.

Set c = inf
n

λn. If c ≤ 0, then inf
||x||=1

⟨Ax, x⟩ ≤ inf
n
⟨Aen, en⟩ = inf

n
|λn| ≤ 0, so in this case, A is not

coercive. Conversely, if c > 0, then ⟨Ax, x⟩ =
∑
n

λn|xn|2 ≥ c
∑
n

|xn|2 = c||x||2 so A is coercive.



Problem 2: Let T denote the unit circle parameterized using the interval I = [−π, π] as usual,
and define the function f ∈ L2(T) via

f(x) =

{
1 when |x| ≤ π/2,

0 when |x| > π/2.

(a) Compute the Fourier series of f .
(b) Determine for which s ∈ R it is the case that f belongs to the Sobolev space Hs(T).
(c) Now define a function g ∈ L2(T2) via

g(x1, x2) = f(x1)f(x2).

For which s ∈ R can you say for sure that g /∈ Hs(T2)?

Solution:

(a) We know that f =

∞∑
n=−∞

⟨en, f⟩en, where en(x) = (2π)−1/2 exp(inx). For n ̸= 0 we find

⟨en, f⟩ =
1√
2π

∫ π

−π
e−inx f(x) dx =

1√
2π

∫ π/2

−π/2
e−inx dx =

1√
2π

∫ π/2

−π/2
cos(nx) dx

=
1√
2π

[
1

n
sin(nx)

]π/2
−π/2

=
1

n
√
2π

(sin(nπ/2)− sin(−nπ/2)) =

√
2

n
√
π
sin(nπ/2).

For n = 0 we find

⟨e0, f⟩ =
1√
2π

∫ π/2

−π/2
dx =

√
π/2.

To summarize,

f(x) =
√

π/2e0(x) +
∑

n=1,5,9,...

√
2

n
√
π

(
en(x) + e−n(x)

)
−

∑
n=3,7,11,...

√
2

n
√
π

(
en(x) + e−n(x)

)
=
1

2
+

∑
n=1,5,9,...

2

nπ
cos(nx)−

∑
n=3,7,11,...

2

nπ
cos(nx).

(Fully simplifying the formula was not required for full points.)

(b) For s ≥ 0, we find that ||f ||2Hs =
∑
n∈Z

(1 + |n|2)s|⟨en, f⟩|2 ∼
∑
n∈N

n2s 1

n2
.

The sum is finite iff 2s− 2 < −1, which is to say, if s < 1/2.

(c) Observe that f /∈ C0(T2). Then the Sobolev embedding theorem tells us that f /∈ Hs(T2) if
s > 1. (Since if f ∈ Hs for s > d/2 = 1, then f would be continuous.)

For a more precise solution, you could use that

||f ||Hs(T2) =
∑
n∈Z2

(1 + |n|2)2|⟨en, f⟩|2,

and then use that for n = (n1, n2) we have

⟨en, f⟩ =
1

2π

∫
T2

exp(i(n1x1 + n2x2)) f(x) dx =
1

2π

∫ π/2

−π/2
exp(in1x1) dx1

∫ π/2

−π/2
exp(in2x2) dx2.

Now use your results from part (a) to show |⟨en, f⟩| ∼ 1/(1+ |n1|)(1+ |n2|) to get a precise result.
(This precise solution was not required for full score.)



Problem 3: Set I = [−1, 1] and let Ω denote the set of continuous functions on I, viewed as a
subset of H = L2(I). Define an operator A : Ω → L2(I) via

[Au](x) =
1

2
u(x) +

1

2
u(−x).

(a) Prove that A can be uniquely extended to an operator in B(H).

(b) Is A a projection? If yes, is it an orthogonal projection?

Solution:

(a) We find that sup
||u||=1

||Au|| = sup
||u||=1

||(1/2)u(x) + (1/2)u(−x)|| ≤ sup
||u||=1

((1/2)||u|| + (1/2)||u||) =

||u||. This shows that A is continuous, and since Ω is dense, we know that there exists a unique
extension.

(b) First we verify that A is a projection on Ω. Define a reflection operator R via [Ru](x) = u(−x).
Observe that R2 = I. Then

A2 =
(
(1/2)I + (1/2)R

)2
= (1/4)I2 + (1/2)R+ (1/4)R2 = (1/2)I + (1/2)R = A.

Since Ω is dense and A (and A2) are continuous, the relationship A2 = A holds for the extended
operator as well.

Next recall that A is orthogonal iff ||A|| = 0 or ||A|| = 1. We showed in (a) that ||A|| ≤ 1. To
verify that ||A|| ≥ 1, simply observe that if u = 1 (or any even function), then ||Au|| = ||u||. So
yes, A is orthogonal.



Problem 4: Let (en)
∞
n=1 be an orthonormal sequence in a Hilbert spaceH, and let P denote the set

of all finite linear combinations of elements of en’s. (Recall that we write this P = Span
(
en
)∞
n=1

.)
Prove that:

P is dense ⇔
(
en
)∞
n=1

is an ON-basis.

Solution: Suppose first that (en)
∞
n=1 is a basis. Given any f ∈ H, define its partial expansion in

(en) as usual:

(1) fN =

N∑
n=1

⟨en, f⟩ en

Since (en) is a basis, we know that fN → f in norm. Since fN ∈ P, this proves that any function
can be approximated arbitrarily well be functions in P.

Suppose next that P is dense. Fix an f ∈ H, and define its partial expansion fN as in (1). We need
to prove that fN → f . Fix any ε > 0. Since P is dense, there is a g ∈ P such that ||f − g|| < ε.
Let N be a number such that g ∈ Span(e1, e2, . . . , eN ) =: PN . Now suppose that that M ≥ N .
Then since g ∈ PM , and fM is the best possible approximant within PM , we find

||f − fM || ≤ ||f − g|| < ε.

This shows that fN → f .


