APPM5450 - Applied Analysis: Section exam 1 - Solutions 8:30-9:50, February 10, 2014. Closed books.

Problem 1: Consider the Hilbert space $H=\ell^{2}(\mathbb{N})$, and the operator

$$
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \lambda_{3} x_{3}, \ldots\right),
$$

where $\left(\lambda_{n}\right)_{n=1}^{\infty}$ is a bounded sequence of complex numbers.
(a) Prove that $\|A\|=\sup _{n}\left|\lambda_{n}\right|$.
(b) Give minimal conditions on the numbers λ_{n} that ensure that A is, respectively:
(i) self-adjoint,
(ii) non-negative,
(iii) positive,
(iv) coercive.

Motivate your claims.
Solution:
(a) Set $M=\sup _{n}\left|\lambda_{n}\right|$. Then

$$
\|A x\|^{2}=\sum_{n=1}^{\infty}\left|\lambda_{n} x_{n}\right|^{2} \leq \sum_{n=1}^{\infty} M^{2}\left|x_{n}\right|^{2}=M^{2}\|x\|^{2} .
$$

Conversely, let e_{n} denote the n 'th canonical unit vector. Then

$$
\|A\|=\sup _{\|x\|=1}\|A x\| \geq\left\|A e_{n}\right\|=\left|\lambda_{n}\right| .
$$

Take the supremum to get $\|A\| \geq \sup _{n}\left|\lambda_{n}\right|=M$.
(b) We find

$$
\langle A x, y\rangle=\sum_{n} \overline{\lambda_{n} x_{n}} y_{n}=\sum_{n} \overline{x_{n}} \overline{\lambda_{n}} y_{n}=\left\langle x, A^{*} y\right\rangle,
$$

where

$$
A^{*}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(\bar{\lambda}_{1} x_{1}, \bar{\lambda}_{2} x_{2}, \bar{\lambda}_{3} x_{3}, \ldots\right)
$$

It follows that A is self-adjoint iff every λ_{j} is purely real.
Next suppose that A is S-A, then $\langle A x, x\rangle=\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}$.
It follows immediately that A is non-negative iff $\lambda_{n} \geq 0$ for every n, and that A is positive iff $\lambda_{n}>0$ for every n.

Set $c=\inf _{n} \lambda_{n}$. If $c \leq 0$, then $\inf _{\|x\|=1}\langle A x, x\rangle \leq \inf _{n}\left\langle A e_{n}, e_{n}\right\rangle=\inf _{n}\left|\lambda_{n}\right| \leq 0$, so in this case, A is not coercive. Conversely, if $c>0$, then $\langle A x, x\rangle=\sum_{n} \lambda_{n}\left|x_{n}\right|^{2} \geq c \sum_{n}\left|x_{n}\right|^{2}=c| | x \|^{2}$ so A is coercive.

Problem 2: Let \mathbb{T} denote the unit circle parameterized using the interval $I=[-\pi, \pi]$ as usual, and define the function $f \in L^{2}(\mathbb{T})$ via

$$
f(x)= \begin{cases}1 & \text { when }|x| \leq \pi / 2 \\ 0 & \text { when }|x|>\pi / 2\end{cases}
$$

(a) Compute the Fourier series of f.
(b) Determine for which $s \in \mathbb{R}$ it is the case that f belongs to the Sobolev space $H^{s}(\mathbb{T})$.
(c) Now define a function $g \in L^{2}\left(\mathbb{T}^{2}\right)$ via

$$
g\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)
$$

For which $s \in \mathbb{R}$ can you say for sure that $g \notin H^{s}\left(\mathbb{T}^{2}\right)$?

Solution:

(a) We know that $f=\sum_{n=-\infty}^{\infty}\left\langle e_{n}, f\right\rangle e_{n}$, where $e_{n}(x)=(2 \pi)^{-1 / 2} \exp (i n x)$. For $n \neq 0$ we find

$$
\begin{aligned}
\left\langle e_{n}, f\right\rangle=\frac{1}{\sqrt{2 \pi}} & \int_{-\pi}^{\pi} e^{-i n x} f(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{-\pi / 2}^{\pi / 2} e^{-i n x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\pi / 2}^{\pi / 2} \cos (n x) d x \\
& =\frac{1}{\sqrt{2 \pi}}\left[\frac{1}{n} \sin (n x)\right]_{-\pi / 2}^{\pi / 2}=\frac{1}{n \sqrt{2 \pi}}(\sin (n \pi / 2)-\sin (-n \pi / 2))=\frac{\sqrt{2}}{n \sqrt{\pi}} \sin (n \pi / 2)
\end{aligned}
$$

For $n=0$ we find

$$
\left\langle e_{0}, f\right\rangle=\frac{1}{\sqrt{2 \pi}} \int_{-\pi / 2}^{\pi / 2} d x=\sqrt{\pi / 2}
$$

To summarize,

$$
\begin{aligned}
f(x) & =\sqrt{\pi / 2} e_{0}(x)+\sum_{n=1,5,9, \ldots} \frac{\sqrt{2}}{n \sqrt{\pi}}\left(e_{n}(x)+e_{-n}(x)\right)-\sum_{n=3,7,11, \ldots} \frac{\sqrt{2}}{n \sqrt{\pi}}\left(e_{n}(x)+e_{-n}(x)\right) \\
& =\frac{1}{2}+\sum_{n=1,5,9, \ldots} \frac{2}{n \pi} \cos (n x)-\sum_{n=3,7,11, \ldots} \frac{2}{n \pi} \cos (n x) .
\end{aligned}
$$

(Fully simplifying the formula was not required for full points.)
(b) For $s \geq 0$, we find that $\|f\|_{H^{s}}^{2}=\sum_{n \in \mathbb{Z}}\left(1+|n|^{2}\right)^{s}\left|\left\langle e_{n}, f\right\rangle\right|^{2} \sim \sum_{n \in \mathbb{N}} n^{2 s} \frac{1}{n^{2}}$.

The sum is finite iff $2 s-2<-1$, which is to say, if $s<1 / 2$.
(c) Observe that $f \notin C^{0}\left(\mathbb{T}^{2}\right)$. Then the Sobolev embedding theorem tells us that $f \notin H^{s}\left(\mathbb{T}^{2}\right)$ if $s>1$. (Since if $f \in H^{s}$ for $s>d / 2=1$, then f would be continuous.)

For a more precise solution, you could use that

$$
\|f\|_{H^{s}\left(\mathbb{T}^{2}\right)}=\sum_{n \in \mathbb{Z}^{2}}\left(1+|n|^{2}\right)^{2}\left|\left\langle e_{n}, f\right\rangle\right|^{2},
$$

and then use that for $n=\left(n_{1}, n_{2}\right)$ we have

$$
\left\langle e_{n}, f\right\rangle=\frac{1}{2 \pi} \int_{\mathbb{T}^{2}} \exp \left(i\left(n_{1} x_{1}+n_{2} x_{2}\right)\right) f(x) d x=\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} \exp \left(i n_{1} x_{1}\right) d x_{1} \int_{-\pi / 2}^{\pi / 2} \exp \left(i n_{2} x_{2}\right) d x_{2}
$$

Now use your results from part (a) to show $\left|\left\langle e_{n}, f\right\rangle\right| \sim 1 /\left(1+\left|n_{1}\right|\right)\left(1+\left|n_{2}\right|\right)$ to get a precise result. (This precise solution was not required for full score.)

Problem 3: Set $I=[-1,1]$ and let Ω denote the set of continuous functions on I, viewed as a subset of $H=L^{2}(I)$. Define an operator $A: \Omega \rightarrow L^{2}(I)$ via

$$
[A u](x)=\frac{1}{2} u(x)+\frac{1}{2} u(-x) .
$$

(a) Prove that A can be uniquely extended to an operator in $\mathcal{B}(H)$.
(b) Is A a projection? If yes, is it an orthogonal projection?

Solution:

(a) We find that $\sup _{\|u\|=1}\|A u\|=\sup _{\|u\|=1}\|(1 / 2) u(x)+(1 / 2) u(-x)\| \leq \sup _{\|u\|=1}((1 / 2)\|u\|+(1 / 2)\|u\|)=$ $\|u\|$. This shows that A is continuous, and since Ω is dense, we know that there exists a unique extension.
(b) First we verify that A is a projection on Ω. Define a reflection operator R via $[R u](x)=u(-x)$. Observe that $R^{2}=I$. Then

$$
A^{2}=((1 / 2) I+(1 / 2) R)^{2}=(1 / 4) I^{2}+(1 / 2) R+(1 / 4) R^{2}=(1 / 2) I+(1 / 2) R=A .
$$

Since Ω is dense and A (and A^{2}) are continuous, the relationship $A^{2}=A$ holds for the extended operator as well.

Next recall that A is orthogonal iff $\|A\|=0$ or $\|A\|=1$. We showed in (a) that $\|A\| \leq 1$. To verify that $\|A\| \geq 1$, simply observe that if $u=1$ (or any even function), then $\|A u\|=\|u\|$. So yes, A is orthogonal.

Problem 4: Let $\left(e_{n}\right)_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space H, and let \mathcal{P} denote the set of all finite linear combinations of elements of e_{n} 's. (Recall that we write this $\mathcal{P}=\operatorname{Span}\left(e_{n}\right)_{n=1}^{\infty}$.) Prove that:

$$
\mathcal{P} \text { is dense } \quad \Leftrightarrow \quad\left(e_{n}\right)_{n=1}^{\infty} \text { is an ON-basis. }
$$

Solution: Suppose first that $\left(e_{n}\right)_{n=1}^{\infty}$ is a basis. Given any $f \in H$, define its partial expansion in $\left(e_{n}\right)$ as usual:

$$
\begin{equation*}
f_{N}=\sum_{n=1}^{N}\left\langle e_{n}, f\right\rangle e_{n} \tag{1}
\end{equation*}
$$

Since $\left(e_{n}\right)$ is a basis, we know that $f_{N} \rightarrow f$ in norm. Since $f_{N} \in \mathcal{P}$, this proves that any function can be approximated arbitrarily well be functions in \mathcal{P}.

Suppose next that \mathcal{P} is dense. Fix an $f \in H$, and define its partial expansion f_{N} as in (1). We need to prove that $f_{N} \rightarrow f$. Fix any $\varepsilon>0$. Since \mathcal{P} is dense, there is a $g \in \mathcal{P}$ such that $\|f-g\|<\varepsilon$. Let N be a number such that $g \in \operatorname{Span}\left(e_{1}, e_{2}, \ldots, e_{N}\right)=: \mathcal{P}_{N}$. Now suppose that that $M \geq N$. Then since $g \in \mathcal{P}_{M}$, and f_{M} is the best possible approximant within \mathcal{P}_{M}, we find

$$
\left\|f-f_{M}\right\| \leq\|f-g\|<\varepsilon
$$

This shows that $f_{N} \rightarrow f$.

