APPM5450 - Applied Analysis: Section exam 2

8:30-9:50, March 19, 2014. Closed books.
Problem 1: (12p) Let A be a self-adjoint bounded compact linear operator on a separable Hilbert space H. Which statements are necessarily true (no motivation required):
(a) H has an ON-basis of eigenvectors of A.
(b) If $\left(e_{n}\right)_{n=1}^{\infty}$ is an ON-sequence, then $\lim _{n \rightarrow \infty}\left\|A e_{n}\right\|=0$.
(c) For any $\lambda \in \mathbb{C}$, the subspace $\operatorname{ker}(A-\lambda I)$ is necessarily finite dimensional.
(d) $\sigma_{\mathrm{c}}(A)=\emptyset$.
(e) $\sigma_{\mathrm{r}}(A)=\emptyset$.
(f) $\|A\|$ is necessarily an eigenvalue of A.

Problem 2: (12p) Let P be a projection on a Hilbert space H. Which of the following statements are necessarily correct (no motivation required):
(a) The spectral radius $r(P)$ is either precisely zero or precisely one.
(b) $\sigma(P) \subseteq\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$.
(c) $\sigma(P) \subseteq \mathbb{R}$.
(d) If P is orthogonal, then $\sigma(P) \subseteq\{0,1\}$.
(e) If $\|P x\|=\|x\|$ for every $x \in H$, then P is necessarily the identity.
(f) If there exist $x \in \operatorname{ran}(P)$ and $y \in \operatorname{ker}(P)$ such that $\langle x, y\rangle \neq 0$, then $\|P\|>1$.

Problem 3: (25p) Let H be a Hilbert space, and let A be a bounded linear operator on H, so that $A \in \mathcal{B}(H)$.
(a) Define the resolvent set $\rho(A)$.
(b) Prove that $\rho(A)$ is an open set.

Problem 4: (25p) Define a map $T: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ via

$$
T(\varphi)=\lim _{\varepsilon \searrow 0}\left(\int_{-\infty}^{-\varepsilon} \frac{1}{x} \varphi(x) d x+\int_{\varepsilon}^{\infty} \frac{1}{x} \varphi(x) d x\right) .
$$

Prove that T is a continuous functional on \mathcal{S}. (You do not need to prove linearity.) What can you say about the order of T ?

Note: Recall that the order of a distribution is the lowest number m for which a bound of the form $|T(\varphi)| \leq C \sum_{\ell \leq k} \sum_{|\alpha| \leq m}\|\varphi\|_{\ell, \alpha}$ holds.

Problem 5: (24p) Consider the Hilbert space $H=L^{2}(\mathbb{R})$. For this problem, we define H as the closure of the set of all compactly supported smooth functions on \mathbb{R} under the norm

$$
\|u\|=\left(\int_{-\infty}^{\infty}|u(x)|^{2} d x\right)^{1 / 2} .
$$

Which of the following sequences converge weakly in H ? Motive your answers briefly.
(a) $\left(u_{n}\right)_{n=1}^{\infty}$ where $u_{n}(x)= \begin{cases}1-|x-n|, & \text { for } x \in[n-1, n+1], \\ 0, & \text { for } x \in(-\infty, n-1) \cup(n+1, \infty) .\end{cases}$
(b) $\left(v_{n}\right)_{n=1}^{\infty}$ where $v_{n}(x)=\sin (n x) e^{-x^{2}}$.
(c) $\left(w_{n}\right)_{n=1}^{\infty}$ where $w_{n}(x)= \begin{cases}1-|x / n-1| & \text { for } x \in[0,2 n] \\ 0 & \text { for } x \in(-\infty, 0) \cup(2 n, \infty) .\end{cases}$

