## APPM5450 - Applied Analysis: Section exam 2 - Solutions 8:30 - 9:50, March 19, 2014. Closed books.

Problem 1: (12p) Let $A$ be a self-adjoint bounded compact linear operator on a separable Hilbert space $H$. Which statements are necessarily true (no motivation required):
(a) $H$ has an ON-basis of eigenvectors of $A$.

TRUE. (Note that when A has a null-space, you can just add an ON-basis for the null-space to the set of evecs associated with non-zero evals.)
(b) If $\left(e_{n}\right)_{n=1}^{\infty}$ is an ON-sequence, then $\lim _{n \rightarrow \infty}\left\|A e_{n}\right\|=0$.

TRUE. You know that $e_{n} \rightharpoonup 0$, and since $A$ is compact, it follows that $A e_{n} \rightarrow 0$.
(c) For any $\lambda \in \mathbb{C}$, the subspace $\operatorname{ker}(A-\lambda I)$ is necessarily finite dimensional.

FALSE. If $\lambda=0$, then the nullspace can be infinite dimensional.
(d) $\sigma_{\mathrm{c}}(A)=\emptyset$.

FALSE. The origin can be in the continuum spectrum.
(e) $\sigma_{\mathrm{r}}(A)=\emptyset$.

TRUE. Since $A$ is self-adjoint.
(f) $\|A\|$ is necessarily an eigenvalue of $A$.

FALSE. It is possible that only $-\|A\|$ is an eval.
Problem 2: (12p) Let $P$ be a projection on a Hilbert space $H$. Which of the following statements are necessarily correct (no motivation required):
(a) The spectral radius $r(P)$ is either precisely zero or precisely one.

TRUE. This follows from $r(P)=\lim _{n \rightarrow \infty}\left\|P^{n}\right\|^{1 / n}$ and $P^{n}=P$.
(b) $\sigma(P) \subseteq\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$.

TRUE. This follows from (a).
(c) $\sigma(P) \subseteq \mathbb{R}$.
(This problem is harder than I had intended. No points were deducted.)
(d) If $P$ is orthogonal, then $\sigma(P) \subseteq\{0,1\}$.

TRUE. You know that $\sigma(P)$ is real, and that $P=I$ on its range.
(e) If $\|P x\|=\|x\|$ for every $x \in H$, then $P$ is necessarily the identity.

TRUE. Recall that $P=I$ on its range, and if $\|P x\|=\|x\|$ for every $x$, then $\operatorname{ker}(P)=\{0\}$.
(f) If there exist $x \in \operatorname{ran}(P)$ and $y \in \operatorname{ker}(P)$ such that $\langle x, y\rangle \neq 0$, then $\|P\|>1$.

TRUE. See proof that $P$ is $S-A$ iff $\|P\|=1$ or 0 .
Problem 3: (25p) Let $H$ be a Hilbert space, and let $A$ be a bounded linear operator on $H$, so that $A \in \mathcal{B}(H)$.
(a) Define the resolvent set $\rho(A)$.
(b) Prove that $\rho(A)$ is an open set.

See course notes for solution.

Problem 4: (25p) Define a map $T: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ via

$$
T(\varphi)=\lim _{\varepsilon \searrow 0}\left(\int_{-\infty}^{-\varepsilon} \frac{1}{x} \varphi(x) d x+\int_{\varepsilon}^{\infty} \frac{1}{x} \varphi(x) d x\right) .
$$

Prove that $T$ is a continuous functional on $\mathcal{S}$. (You do not need to prove linearity.) What can you say about the order of $T$ ?

Note: Recall that the order of a distribution is the lowest number $m$ for which a bound of the form $|T(\varphi)| \leq C \sum_{\ell \leq k} \sum_{|\alpha| \leq m}\|\varphi\|_{\ell, \alpha}$ holds.

Solution: Set $\psi(x)=\frac{\varphi(x)-\varphi(-x)}{x}$.
For $x>0$, we find that $|\psi(x)|=\left|\frac{1}{x} \int_{-x}^{x} \varphi^{\prime}(y) d y\right| \leq 2| | \varphi \|_{1,0}$.
For $x>0$, we also find that $|\psi(x)|=|x|^{-1}\left(1+x^{2}\right)^{-1 / 2}\left(1+x^{2}\right)^{1 / 2}|\varphi(x)+\varphi(-x)| \leq \frac{1}{x^{2}} 2| | \varphi \|_{0,1}$.
Via a change of variable, we find $T(\varphi)=\lim _{\varepsilon} \backslash 0 \int_{\varepsilon}^{\infty} \psi(x) d x$. Note that $\psi$ is a continuous bounded function, so the limit exists and $T(\varphi)=\int_{0}^{\infty} \psi(x) d x$. Then

$$
|T(\varphi)|=\left|\int_{0}^{1} \psi(x) d x+\int_{1}^{\infty} \psi(x) d x\right| \leq \int_{0}^{1} 2\|\varphi\|_{1,0} d x+\int_{1}^{\infty} \frac{1}{x^{2}} 2\|\varphi\|_{0,1} d x=2\|\varphi\|_{1,0}+2\|\varphi\|_{0,1} .
$$

This proves that $T$ has order at most 1. Two points were deducted if you omit the "at most" part.
Full credit was awarded without providing a proof that the order cannot be 0 . But for completeness, this part of the arguments can be done as follows: For $n$ positive, pick $\varphi_{n} \in \mathcal{S}$ such that

- $\left|\varphi_{n}(x)\right| \leq 1$ for all $x$.
- $\left|\varphi_{n}(x)\right|=0$ for all $x$ such that $|x| \geq 2$.
- $\varphi_{n}(x) \geq 0$ for $x \geq 0$.
- $\varphi_{n}(x) \leq 0$ for $x \leq 0$.
- $\varphi_{n}(x)=1$ for $x \in[1 / n, 1]$.
- $\varphi_{n}(x)=-1$ for $x \in[-1,-1 / n]$.

Observe that then $\left\|\varphi_{n}\right\|_{0, k} \leq 5^{k / 2}$ for every $n$, but

$$
T\left(\varphi_{n}\right) \geq \int_{1 / n \leq|x| \leq 1} \frac{1}{x} \varphi(x) d x=\int_{1 / n \leq|x| \leq 1} \frac{1}{x} d x=2 \int_{1 / n}^{1} \frac{1}{x} d x=2 \log (n) \rightarrow \infty .
$$

Incidentally, observe that for this sequence, we must necessarily have $\left\|\varphi_{n}\right\|_{1,0}=\left\|\varphi_{n}^{\prime}\right\|_{\mathrm{u}} \geq n$, since $\varphi_{n}$ changes from the value -1 to value 1 in the distance $2 / \mathrm{n}$.

Problem 5: $(24 \mathrm{p})$ Consider the Hilbert space $H=L^{2}(\mathbb{R})$. For this problem, we define $H$ as the closure of the set of all compactly supported smooth functions on $\mathbb{R}$ under the norm

$$
\|u\|=\left(\int_{-\infty}^{\infty}|u(x)|^{2} d x\right)^{1 / 2}
$$

Which of the following sequences converge weakly in $H$ ? Motive your answers briefly.
(a) $\left(u_{n}\right)_{n=1}^{\infty}$ where $u_{n}(x)= \begin{cases}1-|x-n|, & \text { for } x \in[n-1, n+1], \\ 0, & \text { for } x \in(-\infty, n-1) \cup(n+1, \infty) .\end{cases}$
(b) $\left(v_{n}\right)_{n=1}^{\infty}$ where $v_{n}(x)=\sin (n x) e^{-x^{2}}$.
(c) $\left(w_{n}\right)_{n=1}^{\infty}$ where $w_{n}(x)= \begin{cases}1-|x / n-1| & \text { for } x \in[0,2 n] \\ 0 & \text { for } x \in(-\infty, 0) \cup(2 n, \infty) .\end{cases}$

Solution: Let $\Omega$ denote the set of smooth functions with compact support. These are by definition dense in $H$. We use the theorem that says that a sequence is weakly convergent iff it is bounded, and you have weak convergence when measured against any member in a dense set. In the solution, we use $\Omega$ as the dense set.

First observe that $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are bounded, but $\left(w_{n}\right)$ is not. We can immediately rule out $\left(w_{n}\right)$.
Fix $f \in \Omega$. Set $M=\sup \{|x|: f(x) \neq 0\}$. Since $f$ has compact support, $M$ is bounded. Now if $n>M+1$, we find that $\left(u_{n}, f\right)=0$, so obviously $\lim _{n \rightarrow \infty}\left(u_{n}, f\right)=0$. This shows $u_{n} \rightharpoonup 0$.

Again fix $f \in \Omega$, and set $g(x)=e^{-x^{2}} f(x)$. Then as $n \rightarrow \infty$,

$$
\left|\left(v_{n}, f\right)\right|=\left|\int_{-\infty}^{\infty} \sin (n x) g(x) d x\right|=\left|-\frac{1}{n} \int_{-\infty}^{\infty} \cos (n x) g^{\prime}(x) d x\right| \leq \frac{1}{n} \int_{-\infty}^{\infty}\left|g^{\prime}(x)\right| d x \rightarrow 0
$$

We use that $g$ has compact support so the boundary terms in the partial integration vanish, and $\int\left|g^{\prime}\right|<\infty$. This shows $v_{n} \rightharpoonup 0$.

In summary, $\left(u_{n}\right)$ and $\left(v_{n}\right)$ both converge weakly to zero, but $\left(w_{n}\right)$ does not converge weakly.

