APPM5450 - Applied Analysis: Section exam 3

8:30-9:50, April 23, 2014. Closed books.
Problem 1: $(20 \mathrm{p})$ Let m denote Lebesgue measure on \mathbb{R}, and let \mathcal{L} denote the set of Lebesugue measurable sets, as usual. Which of the following functions n are not measures on $(\mathbb{R}, \mathcal{L})$:
(a) $n(\Omega)=2 m(\Omega)$
(b) $n(\Omega)=(m(\Omega))^{2}$
(c) $n(\Omega)=1+m(\Omega)$
(d) $n(\Omega)=m(2 \Omega)$, where $2 \Omega=\{2 x: x \in \Omega\}$
(e) $n(\Omega)=\int_{\Omega} e^{x} d m(x)$
(f) $n(\Omega)=\int_{\Omega} \sin (x) d m(x)$

Motivate briefly, but only for those that are not measures.
Problem 2: (10p) For which of the following functions is the Lebesgue integral defined w.r.t. Lebesgue measure on the specified set X. (No motivation necessary.)
(a) $f(x)=\sin (x)$ on $X=\mathbb{R}$.
(b) $f(x)=e^{x}$ on $X=\mathbb{R}$.
(c) $f(x)=1 / x$ (with $f(0)=0)$ on $X=(-1,1)$.
(d) $f(x)=1 / x$ on $X=(0, \infty)$.

Problem 3: (30p) The following are worth 10 points each.
(a) Evaluate $\int_{0}^{\infty}\left(\frac{\sin (x)}{x}\right)^{2} d x$.
(b) Set $f_{n}(x)=\cos (n x) \frac{\sin (x / 2)}{x}$. What is its Fourier transform \hat{f}_{n} ?
(c) Set $h_{N}=\sum_{n=1}^{N} f_{n}$, where f_{n} is defined as in (b). Does the sequence $\left(h_{N}\right)_{N=1}^{\infty}$ converge in $\mathcal{S}^{*}(\mathbb{R})$? If yes, then specify the limit and motive briefly. If no, then motivate briefly.

Hint: The function $g=\chi_{(-1 / 2,1 / 2)}$ has the Fourier transform $\hat{g}(t)=\sqrt{\frac{2}{\pi}} \frac{\sin (t / 2)}{t}$.
Problem 4: (20p) Suppose that $f \in H^{3}\left(\mathbb{R}^{d}\right)$, where d is a positive integer, and that u satisfies

$$
-\Delta u+u=f \quad \text { on } \mathbb{R}^{d},
$$

where Δ denotes the Laplace operator as usual,

$$
\Delta u=\sum_{j=1}^{d} \frac{\partial^{2} u}{\partial x_{j}^{2}}
$$

For which $t \geq 0$ do we know that $u \in H^{t}\left(\mathbb{R}^{d}\right)$? Can you for any d say for sure that $u \in C_{0}\left(\mathbb{R}^{d}\right)$?
Problem 5: (20p) Below, four different distributions $T \in \mathcal{S}^{*}(\mathbb{R})$ are specified. In each case, give its Fourier distribution \hat{T}. Simplify \hat{T} as far as you can, and provide a brief motivation.
(a) $\operatorname{Set} T(x)=x$.
(b) Set $T(x)=x e^{-x^{2} / 2}$.
(c) Fix two functions $\psi, \chi \in \mathcal{S}(\mathbb{R})$, and let T denote their convolution, $T(x)=[\psi * \chi](x)$.
(d) Set $f(x)=x$, let $S=\delta^{\prime}$ denote the derivative of the Dirac δ-function, and define the product of f and S as $T=f S$.

