APPM5450 - Applied Analysis: Section exam 3 - Solutions

8:30-9:50, April 23, 2014. Closed books.
Problem 1: (20p) Let m denote Lebesgue measure on \mathbb{R}, and let \mathcal{L} denote the set of Lebesugue measurable sets, as usual. Which of the following functions n are not measures on $(\mathbb{R}, \mathcal{L})$:
(a) $n(\Omega)=2 m(\Omega)$
(b) $n(\Omega)=(m(\Omega))^{2}$
(c) $n(\Omega)=1+m(\Omega)$
(d) $n(\Omega)=m(2 \Omega)$, where $2 \Omega=\{2 x: x \in \Omega\}$
(e) $n(\Omega)=\int_{\Omega} e^{x} d m(x)$
(f) $n(\Omega)=\int_{\Omega} \sin (x) d m(x)$

Motivate briefly, but only for those that are not measures.

Solution:

(b) is not a measure since it is not additive. Set, e.g, $\Omega_{1}=(0,1)$ and $\Omega_{2}=(1,2)$. Then $n\left(\Omega_{1}\right)+$ $n\left(\Omega_{2}\right)=1^{2}+1^{2}=2$, but $n\left(\Omega_{1} \cup \Omega_{2}\right)=(1+1)^{2}=4$.
(c) is not a measure since $n(\emptyset)=1$.
(f) is not a measure since it can take on negative values. For instance $n((\pi, 2 \pi))=-2$.

Problem 2: (10p) For which of the following functions is the Lebesgue integral defined w.r.t. Lebesgue measure on the specified set X. (No motivation necessary.)
(a) $f(x)=\sin (x)$ on $X=\mathbb{R}$.
(b) $f(x)=e^{x}$ on $X=\mathbb{R}$.
(c) $f(x)=1 / x($ with $f(0)=0)$ on $X=(-1,1)$.
(d) $f(x)=1 / x$ on $X=(0, \infty)$.

Solution:

(a) and (c) do not have a well-defined integrals since $\int f_{+}=\int f_{-}=\infty$.

Problem 3: (30p) The following are worth 10 points each.
(a) Evaluate $\int_{0}^{\infty}\left(\frac{\sin (x)}{x}\right)^{2} d x$.
(b) Set $f_{n}(x)=\cos (n x) \frac{\sin (x / 2)}{x}$. What is its Fourier transform \hat{f}_{n} ?
(c) Set $h_{N}=\sum_{n=1}^{N} f_{n}$, where f_{n} is defined as in (b). Does the sequence $\left(h_{N}\right)_{N=1}^{\infty}$ converge in $\mathcal{S}^{*}(\mathbb{R})$? If yes, then specify the limit and motive briefly. If no, then motivate briefly.

Hint: The function $g=\chi_{(-1 / 2,1 / 2)}$ has the Fourier transform $\hat{g}(t)=\sqrt{\frac{2}{\pi}} \frac{\sin (t / 2)}{t}$.

Solution:

(a) The idea here is to observe that the integral is essentially the L^{2} norm of the function \hat{g} specified in the hint. Then observe that by the Parceval equality, $\|\hat{g}\|_{L^{2}}=\|g\|_{L^{2}}$, and $\|g\|_{L^{2}}$ is trivially seen to equal 1. To be precise,

$$
\begin{array}{rl}
\int_{0}^{\infty}\left(\frac{\sin (x)}{x}\right)^{2} d x=\int_{0}^{\infty}\left(\frac{\sin (y / 2)}{y / 2}\right)^{2} & d y / 2=2 \int_{0}^{\infty}\left(\frac{\sin (y / 2)}{y}\right)^{2} d y \\
& =\int_{-\infty}^{\infty}\left(\frac{\sin (y / 2)}{y}\right)^{2} d y=\left\|\sqrt{\frac{\pi}{2}} \hat{g}\right\|_{L^{2}}^{2}=\frac{\pi}{2}\|\hat{g}\|_{L^{2}}^{2}=\frac{\pi}{2}
\end{array}
$$

(b) First write out $\cos (n x)$ as exponentials:

$$
f_{n}(x)=\cos (n x) \sqrt{\pi / 2} \hat{g}(x)=(1 / 2)\left(e^{i n x}+e^{-i n x}\right) \sqrt{\pi / 2} \hat{g}(x)
$$

Now use that multiplication by an exponential corresponds to a shift in Fourier space:

$$
\hat{f}_{n}(x)=(1 / 2)\left(\tau_{-n}+\tau_{n}\right) \sqrt{\pi / 2} \hat{\hat{g}}(x)=(1 / 2)\left(\tau_{-n}+\tau_{n}\right) \sqrt{\pi / 2} g(x),
$$

since $\mathcal{F}^{2}=R$, and $R g=g$. To summarize,

$$
\hat{f}_{n}=\sqrt{\pi / 8}\left(\chi_{(-n-1 / 2,-n+1 / 2)}+\chi_{(n-1 / 2, n+1 / 2)}\right)
$$

(c) Use that $\left(h_{N}\right)$ converges iff $\left(\hat{h}_{N}\right)$ converges (since \mathcal{F} is an isomorphism on \mathcal{S}^{*}). We easily find that

$$
\hat{h}_{N} \rightarrow \sqrt{\pi / 8}\left(\chi_{(-\infty,-1 / 2)}+\chi_{(1 / 2, \infty)}\right)=\sqrt{\pi / 8}\left(1-\chi_{(-1 / 2,1 / 2)}\right) .
$$

Applying \mathcal{F}^{*}, we find that $h_{N} \rightarrow h$, where

$$
h(x)=\sqrt{\frac{\pi}{8}}(\sqrt{2 \pi} \delta-\hat{g}(x))=\sqrt{\frac{\pi}{8}}\left(\sqrt{2 \pi} \delta-\sqrt{\frac{2}{\pi}} \frac{\sin (x / 2)}{x}\right)=\frac{\pi}{2} \delta-\frac{\sin (x / 2)}{2 x} .
$$

Problem 4: (20p) Suppose that $f \in H^{3}\left(\mathbb{R}^{d}\right)$, where d is a positive integer, and that u satisfies

$$
-\Delta u+u=f \quad \text { on } \mathbb{R}^{d},
$$

where Δ denotes the Laplace operator as usual,

$$
\Delta u=\sum_{j=1}^{d} \frac{\partial^{2} u}{\partial x_{j}^{2}} .
$$

For which $t \geq 0$ do we know that $u \in H^{t}\left(\mathbb{R}^{d}\right)$? Can you for any d say for sure that $u \in C_{0}\left(\mathbb{R}^{d}\right)$?
Solution: We see that $\hat{u}(t)=\left(1+|t|^{2}\right)^{-1} \hat{f}(t)$, which immediately implies that $u \in H^{3+2}\left(\mathbb{R}^{d}\right)=$ $H^{5}\left(\mathbb{R}^{d}\right)$. Since the Sobolev spaces are nested, we find: $u \in H^{t}$ for $0 \leq t \leq 5$

Recall that $u \in H^{s}\left(\mathbb{R}^{d}\right)$ implies that $u \in C_{0}\left(\mathbb{R}^{d}\right)$ provided that $s>d / 2$. Here $s=5$, so $u \in C_{0}$ provided that $d<10$.

Problem 5: (20p) Below, four different distributions $T \in \mathcal{S}^{*}(\mathbb{R})$ are specified. In each case, give its Fourier distribution \hat{T}. Simplify \hat{T} as far as you can, and provide a brief motivation.
(a) Set $T(x)=x$.
(b) Set $T(x)=x e^{-x^{2} / 2}$.
(c) Fix two functions $\psi, \chi \in \mathcal{S}(\mathbb{R})$, and let T denote their convolution, $T(x)=[\psi * \chi](x)$.
(d) Set $f(x)=x$, let $S=\delta^{\prime}$ denote the derivative of the Dirac δ-function, and define the product of f and S as $T=f S$.

Solution:

(a) We have $\mathcal{F}^{*}(\delta)=\beta$ where $\beta=1 / \sqrt{2 \pi}$. Then $\mathcal{F}^{*}\left(\delta^{\prime}\right)(x)=-i x \beta=-i \beta T(x)$. Then $\delta^{\prime}=-i \beta \hat{T}$ and so $\hat{T}=i \sqrt{2 \pi} \delta^{\prime}$.
(b) Set $g(x)=e^{-x^{2} / 2}$. Recall that $\hat{g}=g$. Then

$$
\mathcal{F}\left[x e^{-x^{2} / 2}\right](t)=-\mathcal{F}\left[g^{\prime}\right](t)=-i t \hat{g}(t)=-i t g(t)=-i t e^{-t^{2} / 2} .
$$

(c) According to a theorem in the syllabus, $\hat{T}(t)=\sqrt{2 \pi} \hat{\psi}(t) \hat{\chi}(t)$.
(d) First we simplify T. Note that $\langle T, \varphi\rangle=\left\langle\delta^{\prime}, f \varphi\right\rangle=-f^{\prime}(0) \varphi(0)-f(0) \varphi^{\prime}(0)=-\varphi(0)$, so $T=-\delta$. Then $\hat{T}=-1 / \sqrt{2 \pi}$.

