APPM4720/5720 — Homework 7 — preliminary version

Consider a multi-component contour Γ as shown in black in the figure below:

The contour has N_{star} points per star, and there are $N_{\text{side}} \times N_{\text{side}}$ stars. (In the figure show, $N_{\text{star}} = 100$ and $N_{\text{side}} = 4$.). In other words, the total number of points is

$$N = N_{\text{side}}^2 N_{\text{star}}.$$

A precise definition of the contour is given in the file main_hw07.

Let Ω denote the domain *exterior* to Γ and consider the Neumann problem:

(BVP)
$$\begin{cases} -\Delta u(x) = 0, & x \in \Omega, \\ u_n(x) = g(x), & x \in \Gamma. \end{cases}$$

Your task is to convert (BVP) to a Boundary Integral Equation and to solve this integral equation numerically using a Krylov method.

Problem 7.1: Try to determine via computational experiments how the condition number of your discretized BIE depends on N_{star} and N_{side} . For this part of the problem, consider only N_{star} and N_{side} that are small enough that you can compute the SVD of the coefficient matrix via the Matlab svd command. You may also want to experiments with the condest command.

Problem 7.2: Solve the linear system you obtain upon discretization using two different methods:

- (1) The Matlab backslash command. The complexity is $O(N^3)$ complexity.
- (2) GMRES. The complexity is $O(N_{\text{iter}} \times N^2)$ where N_{iter} denotes the number of iterations.

Provide a plot of N_{iter} versus N for a couple of different values of N_{star} . Does GMRES ever outperform the backslash command for problems sizes that are small enough to fit in your memory?

Problem 7.3 (extra credit): Repeat problem 7.2, but now include an option where the FMM is used to accelerate the matrix-vector multiply. You may use the FMM code posted on the webpage for the class, but note that you will need to write a wrapper! The complexity of the resulting method should be $O(N_{\text{iter}} \times N)$. Does your code seem to achieve this?

Problem 7.4 (extra credit): Develop tools for plotting the solution to (BVP). You could create "quiver" diagrams of the gradient of u, or 3D plots of u in Ω . A particularly simple thing to do would be to just compute $u|_{\Gamma}$ and use the plot3 command to plot u on the boundaries.

Now create some "interesting" problems, plot the solution, and submit your plot along with a brief description of the problem you are solving.