
Course outline for

Open topics in applied mathematics:

Fast Methods in Scientific Computation

Review of background material

• Basic techniques from numerical analysis such as quadrature rules for evaluating integrals,
and the FFT for evaluating Fourier transforms.

• How do you measure the performance of a numerical algorithm? How does its execution
speed depend on problem size, on requested accuracy, on the number of processors available,
etc.? How do you estimate these metrics in practice?

• Methods for improving the execution speed of programs in Matlab. Good programming
habits; backups; how to structure a large coding project, etc.

The Laplace and Poisson equations — basic solution strategies

The Laplace and Poisson equations are the prototype equations for the large class of so called
elliptic equations. Many (but not all) of the basic techniques and results for these equations
generalize straight-forwardly to the broader class. In this class, we will for the most part talk about
Laplace and Poisson, and then briefly review how other equations (Maxwell, elasticity, Stokes, etc.)
are different. This section of the class will review some basic results for Laplace/Poisson:

• Derivation and motivation.

• Classical analytic methods for solving the Laplace and Poisson equations (fundamental
solutions, Green’s functions, separation of variables, Fourier methods, etc). How can you
use such methods for computationally constructing solutions?

• Very brief review of finite difference, finite element, and FFT based methods. Introduction
to data structures for sparse matrices and iterative solvers.

The Fast Multipole Method and other hierarchical codes

The Fast Multipole Method (FMM) is a technique for rapidly evaluating a sum such as

(1) ui =

N∑
j=1

K(xi, xj) qj

where

{xi}Ni=1 is a set of particle locations,xi ∈ Rd,

{qi}Ni=1 is a set of charges, qi ∈ R or qi ∈ C,

{ui}Ni=1 is a set of potentials, ui ∈ R or ui ∈ C.



and where K(x, y) is some given kernel function. For instance, if

K(x,y) =
1

4π |x− y|
,

then the sum (1) corresponds to the evaluation of the electric potentials ui caused by N electric
charges qi placed at points xi.

Sums such as (1) arise directly in a broad range of applications (astrophysics, biochemical models,
models of semi-conductors, etc.), and also arise indirectly in many fast methods for solving PDEs.

Näıve evaluation of the sum (1) would require O(N2) operations (since there are N(N − 1)/2
distinct pairwise interactions). The FMM is a tool for computing an approximation to the sum
in O(N) operations. Any given accuracy can be obtained, with the caveat that the higher the
accuracy you want, the larger the constant of proportionality in the O(N) expression.

The class will describe the FMM in some depth; in part because it is a very powerful tool in its
own right, and in part because it nicely illustrates the broader concept of algorithms based on
hierarchical domain partitioning.

Boundary Integral Equations

That partial differential equations are useful for modeling a very broad range of problems in science
and engineering is very well known. What is less well appreciated is that it is in many situations
possible and advantageous to rewrite a differential equation as an integral equation. As an example,
consider the Laplace equation with Dirichlet boundary data on a domain Ω with boundary Γ:

(2)

{
−∆u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ.

Equation (2) is in a strong sense equivalent to the integral equation

(3) −1

2
σ(x) +

∫
Γ

n(y) · (x− y)

2π |x− y|2
σ(y) ds(y) = g(x), x ∈ Γ,

where for a point y ∈ Γ, the vector n(y) is the unit normal vector. to Γ. The integral equation
formulation (3) has many advantages over the differential equation formulation (2):

• The dimensionality of (3) is lower. If Ω is a domain in R2, then (2) is an equation on a
two-dimensional domain, and (3) is an equation on a one-dimensional domain.

• The equation (3) is “nicer” from a mathematical point of view; it involves a bounded
operator, it is a “second kind Fredholm equation”, etc.

A drawback of working with integral equations is that they typically lead to dense linear systems
upon discretization.

The class will cover the following topics:

• Describe when integral equation formulations are possible, and how to derive them.

• Describe efficient solution strategies for solving integral equations.

• Discuss advantages and disadvantages of using integral equations.



Iterative solvers

Very often when solving PDEs numerically one needs to find a vector x that solves a linear system
of the form

(4) Ax = b,

where A is a given N ×N matrix, and b is a given data function. When N is of moderate size (say
a few thousands at most), one can use elementary techniques such Gaussian elimination. However,
these require O(N3) floating point operations, and quickly become too expensive. The class
will describe some iterative solvers that constructs a sequence of successively better approximate
solutions to (4) by applying A to a sequence of vectors. When A can be applied rapidly (for instance
because it is sparse, or is amenable to a fast methods such as the FMM), iterative methods can
be highly effective, often solving the equation in O(N) operations.

The depth of the discussion will be based on student preferences. (If many students already know
this material, we will do only a very basic review.)

Extensions to other equations

In this part of the class, we will conduct a brief review of some of the standard PDEs encountered
in applications, for instance:

• Helmholtz’ equation.

• Maxwell’s equation.

• The equations of linear elasticity.

• The Navier-Stokes’, and the Stokes’ equations.

We will describe how each equation arises, discuss its characteristic mathematical properties, and
outline how it can be solved efficiently.

Computing in the real world

At the end of the class, we will discuss what simplifying assumptions we made, and what additional
challenges are encountered when the techniques described are to be used in practice. For instance,
most of the class will focus on 2D problems, whereas of course almost all engineering applications
involve 3D problems. How much harder is 3D than 2D? What are the major differences? Other
practical questions involve:

• When should you use a better method, and when should you simply buy a faster computer?
(Human time is very expensive. . . )

• Practical problems often involve many different kinds of physics at once. How do you
handle that?

• Techniques for representing geometries, etc.


