Week Topics Sections Assignment Due date
4-Sept Fixed points, stability, linear stability analysis 2.2,2.4 2.1.4, 2.2.1, 2.2.6, 2.2.8, 2.2.9, 2.2.12, 2.4.2, 2.4.9 (optional)
[Note: We will discuss 2.2.12 - the nonlinear resistor - in class on Friday] Solutions .
12-Sept
5-Sept Linear stability, Euler's method 2.4,2.8 Hand in the group project one or two . For the logistic population growth model with r=0.04, K=1000 and initial value N(0)=500, estimate (using Euler's method with monthly time increments) how large the population will be in one year. Compare with the real result from the project.
Solutions: Group 1 Group 2(pdf files)
12-Sept
12-Sept Bifurcations 3.1,3.1,3.4 3.1.1,3.1,3.,3.2.3,3.2.4,3.4.4,3.4.6,(optional 3.4.14)
Solutions
17-Sept
17-Sept Bifurcations. One-dimensional maps. 3.6,10.1 3.6.3, 10.1.9,10.1.11
Solutions
26-Sept
26-Sept Lyapunov exponent 3.1,3.1,3.4 10.3.5, 10.3.10, 10.5.1, 10.5.2, 10.5.7
Solutions
10-Oct
17-Oct Linear systems. Classification 5.1,5.2,5.3 Option 1: 5.1.9, 5.1.10 (a)&(e), 5.2.8, 5.2.13
Option 2: 5.2.11, 5.3.3, 5.3.4, 5.3.5, 5.3.6
Solutions Option 1 and Option 2
26-Oct
29-Oct Phase portraits. Conservative systems 6.1,6.3,6.5 6.3.10, 6.3.14, 6.5.1, 6.5.2
Solutions
7-Nov
14-Nov Limit cycles.
Gradient systems, Lyapunov functions
7.1,7.2,7.3 7.2.9(a & c), 7.2.12
Solutions
26-Nov
5-Dec The Lorenz system. Cantor sets. Fractal and box dimension. 9.2,11.2,11.3,11.4 9.2.1,11.2.5,11.3.2,11.3.4, 11.3.7,11.3.9,11.4.1,11.4.2 14-Dec