| Week | Topics | Sections | Assignment | Due date |
| 4-Sept | Fixed points, stability, linear stability analysis | 2.2,2.4 | 2.1.4, 2.2.1, 2.2.6, 2.2.8, 2.2.9, 2.2.12, 2.4.2, 2.4.9
(optional) [Note: We will discuss 2.2.12 - the nonlinear resistor - in class on Friday] Solutions . |
12-Sept |
| 5-Sept | Linear stability, Euler's method | 2.4,2.8 | Hand in the group project one or two . For the logistic population growth model with r=0.04,
K=1000 and initial value N(0)=500, estimate (using Euler's method with
monthly time increments) how large the population will be in one
year. Compare with the real result from the project. Solutions: Group 1 Group 2(pdf files) | 12-Sept | 12-Sept | Bifurcations | 3.1,3.1,3.4 | 3.1.1,3.1,3.,3.2.3,3.2.4,3.4.4,3.4.6,(optional 3.4.14) Solutions |
17-Sept | 17-Sept | Bifurcations. One-dimensional maps. | 3.6,10.1 | 3.6.3, 10.1.9,10.1.11 Solutions |
26-Sept | 26-Sept | Lyapunov exponent | 3.1,3.1,3.4 | 10.3.5, 10.3.10, 10.5.1, 10.5.2, 10.5.7 Solutions |
10-Oct | 17-Oct | Linear systems. Classification | 5.1,5.2,5.3 | Option 1: 5.1.9, 5.1.10 (a)&(e), 5.2.8, 5.2.13 Option 2: 5.2.11, 5.3.3, 5.3.4, 5.3.5, 5.3.6 Solutions Option 1 and Option 2 | 26-Oct | 29-Oct | Phase portraits. Conservative systems | 6.1,6.3,6.5 | 6.3.10, 6.3.14, 6.5.1, 6.5.2 Solutions | 7-Nov | 14-Nov | Limit cycles. Gradient systems, Lyapunov functions | 7.1,7.2,7.3 | 7.2.9(a & c), 7.2.12 Solutions | 26-Nov |
| 5-Dec | The Lorenz system. Cantor sets. Fractal and box dimension. | 9.2,11.2,11.3,11.4 | 9.2.1,11.2.5,11.3.2,11.3.4, 11.3.7,11.3.9,11.4.1,11.4.2 | 14-Dec |