
1___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Linear Models: Linear Regression and Correlation

So far, we tested whether two subpopulations’ means 
are equal.

For example, we can so far answer:

is fever reduction effect of a certain drug the same for 
children vs. adults? The answer would be:

H0 : 1 = 2  

But what should we do when we have more than 2 
subpopulations?
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Linear Models: Linear Regression and Correlation

What happens if we now wish to consider many age 
groups: infants (0-1), toddlers (1-3), pre-school (3-6), 
early school (6-9), … old age (65 and older)?

H0 : 1 = 2 = 3 = 4 = … = 15  

What would some of the alternatives be?
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Linear Models: Linear Regression and Correlation

One alternative:

Ha : 1 < 2 < 3 < 4 < … < 15

This is doable, but it would be a cumbersome test. 

Or, another:

Ha : 1 = 2 - b = 3 -2b  = … = 15 – 14b  ;

Then,  H0: b = 0 

In other words, we postulate a specific relationship 
between the subpopulation means, which simplifies the 
null hypothesis.
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The Simple Linear Regression Model

The simplest deterministic mathematical relationship between two 
variables x and y is a linear relationship 
y = 0 + 1x. 

The set of pairs (x, y) for which y = 0 + 1x determines a straight line 
with slope 1 and y-intercept 0. 

The objective of this section is to develop an equivalent linear 
probabilistic model.

If the two variables are probabilistically related, then for a fixed value of 
x, there is uncertainty in the value of the second variable. 

We say that the two variables are related linearly “on average”
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The Simple Linear Regression Model

More generally, the variable whose value is fixed by the 
experimenter will be denoted by x and will be called the 
independent, predictor, or explanatory variable.

For fixed x, the second variable will be random; we denote 
this random variable and its observed value by Y and y, 
respectively, and refer to it as the dependent or response 
variable.

Usually observations will be made for a number of settings 
of the independent variable.
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The Simple Linear Regression Model

Let x1, x2, …, xn denote values of the independent variable 
for which observations are made, and let Yi and yi, 
respectively, denote the random variable and observed 
value associated with xi. 

The available bivariate data then consists of the n pairs 

(x1, y1), (x2, y2), …, (xn, yn). 

A picture of this data called a scatter plot gives preliminary 
impressions about the nature of any relationship. In such a 
plot, each (xi, yi) is represented as a point plotted on a two 
dimensional coordinate system.
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Example 1

The order in which observations were obtained was not 
given, so for convenience data are listed in increasing order 
of x values:

Thus (x1, y1) = (.40, 1.02), (x5, y5) = (.57, 1.52), and so on.

cont’d
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Example 1
The scatter plot (OSA=y, palwidth = x):

cont’d
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Example 1

• There is a strong tendency for y to increase as x 
   increases. That is, larger values of OSA tend to be 
   associated with larger values of width—a positive     
   relationship between the variables.

• It appears that the value of y could be predicted from x by 
  finding a line that is reasonably close to the points in the   
  plot  

In other words, there is indication of a substantial (though 
not perfect) linear relationship between the two variables.

cont’d
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A Linear Probabilistic Model

For the deterministic model y = 0 + 1x, the actual 
observed value of y is a linear function of x. 

The appropriate generalization of this to a probabilistic 
model assumes that 

the average of Y is a linear function of x

-- ie, that for fixed x the actual value of variableY differs 
from its expected value by a random amount.
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Simple Linear Regression Model

There are parameters 0, 1, and  
2, such that for any fixed 

value of the independent variable x, the dependent variable 
is a random variable related to x through the model 
equation

                         Y = 0 + 1x +  

The quantity  in the model equation is the ERROR -- a 
random variable, assumed to be symmetrically distributed 
with 

                     E() = 0 and V() =  
2.
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A Linear Probabilistic Model

The variable  is sometimes referred to as the random 
deviation or random error term in the model. 

Without , any observed pair (x, y) would correspond to a 
point falling exactly on the line 0 + 1x, called the true (or 
population) regression line.

The inclusion of the random error term allows (x, y) to fall 
either above the true regression line (when  > 0) or below 
the line (when  < 0).
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A Linear Probabilistic Model

The points (x1, y1), …, (xn, yn) resulting from n independent 
observations will then be scattered about the true 
regression line:
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A Linear Probabilistic Model

On occasion, the appropriateness of the simple linear 
regression model may be suggested by theoretical 
considerations (e.g., there is an exact linear relationship 
between the two variables, with  representing 
measurement error). 

Much more frequently, 

the reasonableness of the 

model is indicated by 

data -- a 

scatter plot exhibiting a 

substantial linear pattern.
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If we think of an entire population of (x, y) pairs, then 

Y | x is the mean of all y values for which x = x, and 

 
2

Y | x is a measure  of how much these values of y spread 
out about the mean value.

If, for example, x = age of a child and y = vocabulary size, 
then Y | 5 is the average vocabulary size for all 5-year-old 
children in the population, and  

2
Y | 5 describes the amount 

of variability in vocabulary size for this part of the 
population.

A Linear Probabilistic Model
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Once x is fixed, the only randomness on the right-hand side 
of the linear model equation is in the random error . 

Recall that its mean value and variance are 0 and  
2, 

respectively, whatever the value of x. This implies that

                           Y | x = E(0 + 1x + )
                               
                                   = 0 + 1x

 + E()

                                   = 0 + 1x

A Linear Probabilistic Model



17___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

                               
2

Y | x = V(0 + 1x
 + )

                                        = V(0 + 1x
) + V()

                                        = 0 +  
2

                                        =  
2

Replacing x in Y | x by x gives the relation Y | x = 0 + 1x, 
which says that the mean value (expected value, average) 
of Y, rather than Y itself, is a linear function of x. 

A Linear Probabilistic Model
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The true regression line y = 0 + 1x is thus the line of mean values; its 
height for any particular x value is the expected value of Y for that 
value of x. 

The slope 1 of the true regression line is interpreted as the expected 
(average) change in Y associated with a 1-unit increase in the value 
of x. 

(This is equivalent to saying “the change in average (expected) Y 
associated with a 1-unit increase in the value of x.”)

The variance (amount of variability) of the distribution of Y values is the 
same at each different value of x (homogeneity of variance).

A Linear Probabilistic Model
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The variance parameter  
2 determines the extent to which 

each normal curve spreads out about the regression line

When errors are normally distributed… 

distribution of  

(b) distribution of Y for different values of x
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When  
2 is small, an observed point (x, y) will almost 

always fall quite close to the true regression line, whereas 
observations may deviate considerably from their expected 
values (corresponding to points far from the line) when  

2 
is large.

Thus, this variance can be used to tell us how good the 
linear fit is (we’ll explore this notion of model fit later.)

A Linear Probabilistic Model
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Example 2

Suppose the relationship between applied stress x and 
time-to-failure y is described by the simple linear regression 
model with true regression line y = 65 – 1.2x and  = 8.

Then for any fixed value x of stress, time-to-failure has a 
normal distribution with mean value 65 – 1.2x and 
standard deviation 8.

Roughly speaking, in the population consisting of all (x, y) 
points, the magnitude of a typical deviation from the true 
regression line is about 8.
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Example 2

For x = 20, Y has mean value 

                            Y |20 = 65 – 1.2(20) =41
                                                                        

So then Y for x=20  is N(41, 64). 

From here,

P(Y > 50 when x = 20) =

                                     =

                                     = .1292

cont’d
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Example 2

The probability that time-to-failure exceeds 50 when 
applied stress is 25 is, because Y |25 = 65 – 1.2(25) = 35,

 P(Y > 50 when x = 25) = 

                                      = 

                                      = .0301

cont’d
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Example 2

These probabilities are illustrated in:

cont’d
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Example 2

Suppose that Y1 denotes an observation on time-to-failure made with x 
= 25 and Y2 denotes an independent observation made with x = 24.

Then 

Y1 – Y2 is normally distributed 

with mean value
E(Y1 – Y2) =  0 + 1(25) - 0 + 1(24) = 1 =  -1.2, 

variance 

V(Y1 – Y2 ) =  
2 +  

2 = 128, 

standard deviation
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Example 2

The probability that Y1 exceeds Y2 is

              P(Y1 – Y2 > 0) =

                                     = P(Z > .11) 

                                     = .4562

That is, even though we expected Y to decrease when 
x increases by 1 unit, it is not unlikely that the observed Y 
at x + 1 will be larger than the observed Y at x.

cont’d
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A couple of caveats with linear relationships…
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A couple of caveats…
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Relation not linear – but an ok approximation in this range of x
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A couple of caveats…
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A couple of caveats…
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A couple of caveats…
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Estimating model 
parameters
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Estimating Model Parameters

The values of 0, 1, and  
2 will almost never be known to 

an investigator. 

Instead, sample data consists of n observed pairs 

(x1, y1), …, (xn, yn), 

from which the model parameters and the true regression 
line itself can be estimated. 

The data (pairs) are assumed to have been obtained 
independently of one another.
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Estimating Model Parameters

That is, yi is the observed value of Yi, where
Yi = 0 + 1xi + I 

and the n deviations 1, 2,…, n  are independent rv’s. 

Independence of Y1, Y2, …, Yn  follows from independence 
of the i’s.

According to the model, the observed points will be 
distributed around the true regression line in a random 
manner.
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Estimating Model Parameters

Figure shows a typical plot of observed pairs along with two 
candidates for the estimated regression line.
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Estimating Model Parameters

The “best fit” line is motivated by the principle of least 
squares, which can be traced back to the German 
mathematician Gauss (1777–1855):

a line provides the best

fit to the data if the sum 

of the squared vertical 

distances (deviations) 

from the observed points 

to that line is as small

as it can be.
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Estimating Model Parameters

The sum of squared vertical deviations from the points
(x1, y1),…, (xn, yn) to the line is then

The point estimates of 0  and 1, denoted by     and     , are 
called the least squares estimates – they are those 
values that minimize f(b0, b1).

That is,     and     are such that                             for any b0 
and b1.
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Estimating Model Parameters

The estimated regression line or least squares line is 
then the line whose equation is y =     +     x.

The minimizing values of b0 and b1 are found by taking 
partial derivatives of f(b0, b1) with respect to both b0 and b1, 
equating them both to zero [analogously to f (b) = 0 in 
univariate calculus], and solving the equations
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Estimating Model Parameters

Cancellation of the –2 factor and rearrangement gives the 
following system of equations, called the normal 
equations:

                              nb0 + (xi)b1 = yi

                                      (xi)b0 + (xi
2)b1 = xiyi

These equations are linear in the two unknowns b0 and b1.

Provided that not all xi’s are identical, the least squares 
estimates are the unique solution to this system.
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Estimating Model Parameters

The least squares estimate of the slope coefficient 1 of the 
true regression line is  

                                                                                     

Shortcut formulas for the numerator and denominator of
    are

Sxy = xiyi – (xi)(yi) / n                   Sxx = xi
2 – (xi)

2/n
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Estimating Model Parameters

The least squares estimate of the intercept 0 of the true 
regression line is

                                                                                   

The computational formulas for Sxy and Sxx require only the 
summary statistics xi, yi, xi

2 and xiyi (yi
2 will be needed 

shortly).

In computing      use extra digits in     because, if x is large 
in magnitude, rounding will affect the final answer. 
In practice, the use of a statistical software package is 
preferable to hand calculation and hand-drawn plots.
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Example 

The cetane number is a critical property in specifying the 
ignition quality of a fuel used in a diesel engine.

 
Determination of this number for a biodiesel fuel is 
expensive and time-consuming.

The article “Relating the Cetane Number of Biodiesel
Fuels to Their Fatty Acid Composition: A Critical Study”
(J. of Automobile Engr., 2009: 565–583) included the 
following data on x = iodine value (g) and y = cetane 
number for a sample of 14 biofuels. 
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Example 

The iodine value is the amount of iodine necessary to 
saturate a sample of 100 g of oil. The article’s authors fit 
the simple linear regression model to this data, so let’s 
follow their lead.

cont’d
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Example 

Calculating the column sums gives 

xi = 1307.5,                 yi = 779.2, 

      = 128,913.93,        xi yi = 71,347.30,

      = 43,745.22, from which 

       Sxx = 128,913.93 – (1307.5)2/14 = 6802.7693

       Sxy = 71,347.30 – (1307.5)(779.2)/14 = –1424.41429

cont’d
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Example 

The estimated slope of the true regression line (i.e., the 
slope of the least squares line) is

We estimate that the expected change in true average 
cetane number associated with a 1g increase in iodine 
value is –.209—i.e., a decrease of .209.

cont’d
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Example 

Since x = 93.392857 and y = 55.657143, the estimated 
intercept of the true regression line (i.e., the intercept of the 
least squares line) is

          = y –       = 55.657143 – (–.20938742)(93.392857)
                          

   = 75.212432

The equation of the estimated regression line (least 
squares line) is y = 75.212 – .2094x, exactly that reported 
in the cited article.

cont’d
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Example 

Scatter plot with the least squares line superimposed. 

cont’d
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Estimating  
2 and  
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Estimating  
2 and 

The parameter  
2 determines the amount of spread about 

the true regression line. Two separate examples:
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Estimating  
2 and 

An estimate of  
2 will be used in confidence interval (CI) 

formulas and hypothesis-testing procedures presented in 
the next two sections.

Because the equation of the true line is unknown, the 
estimate is based on the extent to which the sample 
observations deviate from the estimated line.

Many large deviations (residuals) suggest a large value of
 

2, whereas deviations all of which are small in magnitude 
suggest that  

2 is small. 
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Estimating  
2 and 

Definition
The fitted (or predicted) values                    are obtained 
by successively substituting x1,…, xn  into the equation of 
the estimated regression line: 

The residuals are the differences
between the observed and fitted y values.

Note – the residuals are estimates of the true error, 
since they are deviations of the y’s from the estimated 
regression line, while the errors are deviations from the .
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Estimating  
2 and 

In words, the predicted value    is the value of y that we 
would predict or expect when using the estimated 
regression line with x = xi;    is the height of the estimated
regression line above the value xi for which the ith 
observation was made. It’s just the mean for that 
population where x = xi.

The residual           is the vertical deviation between the 
point (xi, yi) and the least squares line—a positive number if 
the point lies above the line and a negative number if it lies 
below the line.
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Estimating  
2 and 

When the estimated regression line is obtained via the 
principle of least squares, the sum of the residuals should 
in theory be zero, if the error distribution is symmetric (and 
it is, due to our assumption).
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Example 

Relevant summary quantities (summary statistics) are
 

xi = 2817.9,            yi = 1574.8,            x2
i = 415,949.85,

 

xi yi = 222,657.88,          and                   y2
i = 124,039.58,

from which x = 140.895, y = 78.74, Sxx = 18,921.8295,
Sxy = 776.434. 
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Example 

Thus

         = 78.74 – (.04103377)(140.895) = 72.958547  72.96 

from which the equation of least squares line is 
y = 72.96 + .041x.

For numerical accuracy, the fitted values are calculated 
from              = 72.958547 + .04103377xi

cont’d
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Example 

All predicted values (fits) and residuals appear in the 
accompanying table.

         

cont’d
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Estimating  
2 and 

The error sum of squares (equivalently, residual sum of 
squares), denoted by SSE, is

and the estimate of  
2 is 
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Estimating  
2 and 

The divisor n – 2 in s2 is the number of degrees of freedom 
(df) associated with SSE and the estimate s2.

This is because to obtain s2, the two parameters 0 and 1

must first be estimated, which results in a loss of 2 df (just 
as  had to be estimated in one sample problems, resulting 
in an estimated variance based on n – 1df). 

Replacing each yi in the formula for s2 by the rv Yi gives the 
estimator S2.

It can be shown that S2 is an unbiased estimator for  
2
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Example, cont.

The residuals for the filtration rate–moisture content data 
were calculated previously.

The corresponding error sum of squares is

       SSE = (–.200)2 + (–.188)2 + ··· + (1.099)2 = 7.968

The estimate of  
2 is then      = s2 = 7.968/(20 – 2) = .4427,

and the estimated standard deviation is
                      = s =            = .665
Roughly speaking, .665 is the magnitude of a typical 
deviation from the estimated regression line—some points 
are closer to the line than this and others are further away.
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Estimating  
2 and 

Computation of SSE from the defining formula involves 
much tedious arithmetic, because both the predicted values 
and residuals must first be calculated.

Use of the following computational formula does not require 
these quantities.

                 

This expression results from substituting                      into
                 squaring the summand, carrying through the 
sum to the resulting three terms, and simplifying.
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The Coefficient of Determination
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The Coefficient of Determination

Different variability in observed y values:

Using the model to explain y variation: 
(a) data for which all variation is explained; 
(b) data for which most variation is explained;
(c) data for which little variation is explained
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The Coefficient of Determination

The points in the first plot all fall exactly on a straight line. In this case, 
all (100%) of the sample variation in y can be attributed to the fact that 
x and y are linearly related in combination with variation in x.

The points in the second plot do not fall exactly on a line, but compared 
to overall y variability, the deviations from the least squares line are 
small.

It is reasonable to conclude in this case that much of the observed y 
variation can be attributed to the approximate linear relationship 
between the variables postulated by the simple linear regression 
model.

When the scatter plot looks like that in the third plot, there is substantial 
variation about the least squares line relative to overall y variation, so 
the simple linear regression model fails to explain variation in y by 
relating y to x.
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The Coefficient of Determination

The error sum of squares SSE can be interpreted as a 
measure of how much variation in y is left unexplained by 
the model—that is, how much cannot be attributed to a 
linear relationship.

In the first plot SSE = 0, and there is no unexplained
variation, whereas unexplained variation is small for 
second, and large for the third plot.

A quantitative measure of the total amount of variation in 
observed y values is given by the total sum of squares
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The Coefficient of Determination

Total sum of squares is the sum of squared deviations 
about the sample mean of the observed y values – when 
no predictors are taken into account.

Thus the same number y is subtracted from each yi in SST,
whereas SSE involves subtracting each different predicted 
value    from the corresponding observed yi.

This in some sense is as bad as SSE can get if there is no 
regression model (ie, slope is 0).
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The Coefficient of Determination

Just as SSE is the sum of squared deviations about the 
least squares line                      SST is the sum of squared 
deviations about the horizontal line at height (since then 
vertical deviations are yi – y)

Sums of squares illustrated: (a) SSE = sum of squared deviations about the least squares 
line; (b) SSE = sum of squared deviations about the horizontal line

(b)(a)
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The Coefficient of Determination

Furthermore, because the sum of squared deviations about 
the least squares line is smaller than the sum of squared 
deviations about any other line, SSE < SST unless the 
horizontal line itself is the least squares line.

The ratio SSE/SST is the proportion of total variation that 
cannot be explained by the simple linear regression model, 
and 1 – SSE/SST (a number between 0 and 1) is the 
proportion of observed y variation explained by the model.
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The Coefficient of Determination

Definition
The coefficient of determination, denoted by r2, is given 
by

It is interpreted as the proportion of observed y variation 
that can be explained by the simple linear regression model 
(attributed to an approximate linear relationship between y 
and x).

The higher the value of r2, the more successful is the 
simple linear regression model in explaining y variation.
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The Coefficient of Determination

When regression analysis is done by a statistical computer 
package, either r2 or 100r2 (the percentage of variation 
explained by the model) is a prominent part of the output.

If r2 is small, an analyst will usually want to search for an 
alternative model (either a nonlinear model or a multiple 
regression model that involves more than a single 
independent variable) that can more effectively explain y 
variation.
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Example 

The scatter plot of the iodine value–cetane number data 
portends a reasonably high r2 value. 
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Example 

The coefficient of determination is then

r2 = 1 – SSE/SST = 1 – (78.920)/(377.174) = .791

That is, 79.1% of the observed variation in cetane number 
is attributable to (can be explained by) the simple linear 
regression relationship between cetane number and
iodine value (r2 values are even higher than this in many 
scientific contexts, but social scientists would typically be 
ecstatic at a value anywhere near this large!).

cont’d
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The Coefficient of Determination

The coefficient of determination can be written in a slightly 
different way by introducing a third sum of 
squares—regression sum of squares, SSR—given by

                  SSR = (   – y)2 = SST – SSE.

Regression sum of squares is interpreted as the amount of 
total variation that is explained by the model.

Then we have

r2 = 1 – SSE/SST = (SST – SSE)/SST = SSR/SST
 

the ratio of explained variation to total variation.
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Inference About the Slope 
Parameter 1
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Inferences About the Slope Parameter 1

In virtually all of our inferential work thus far, the notion of 
sampling variability has been pervasive.

In particular, properties of sampling distributions of various 
statistics have been the basis for developing confidence 
interval formulas and hypothesis-testing methods.

The key idea here is that the value of any quantity 
calculated from sample data—the value of any 
statistic—will vary from one sample to another.
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Example 10

The following data is representative of that reported in the 
article “An Experimental Correlation of Oxides of Nitrogen 
Emissions from Power Boilers Based on Field Data” (J. of 
Engr. for Power, July 1973: 165–170), x = burner-area 
liberation rate (MBtu/hr-ft2) and y = NOx emission rate 
(ppm).

There are 14 observations, made at the x values 100, 125, 
125, 150, 150, 200, 200, 250, 250, 300, 300, 350, 400, and 
400, respectively.
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Simulation experiment

Suppose that the slope and intercept of the true regression line are 

1 = 1.70 and 0 = –50, with  = 35.

Let’s fix x values 100, 125, 125, 150, 150, 200, 200, 250, 250, 300, 
300, 350, 400, and 400.

We then generate a sample of random deviations 

from a normal distribution with mean 0 and standard deviation 35 

and then add       to 0 + 1xi  to obtain 14 corresponding y values.

LS calculations were then carried out to obtain the estimated slope, 
intercept, and standard deviation for this sample of 14 pairs (xi,yi).

cont’d
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Simulation experiment

This process was repeated a total of 20 times, resulting in 
the values:

There is clearly variation in values of the estimated slope 
and estimated intercept, as well as the estimated standard 
deviation. 

cont’d
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Simulation experiment: 
graphs of the true regression line and 20 least squares lines
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Inferences About the Slope Parameter 1

The estimators are:

                                            =>

That is,    is a linear function of the independent rv’s 
Y1, Y2, . . . , Yn, each of which is normally distributed. 
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Inferences About the Slope Parameter 1

Invoking properties of a linear function of random variables 
as discussed earlier, leads to the following results.

1. The mean value of     is E(   ) =       = 1, so     is an 
    unbiased estimator of 1 (the distribution of      is always  
    centered at the value of 1).

2. The variance and standard deviation of 1 are

     where Sxx = (xi – x)2 
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Inferences About the Slope Parameter 1

   Replacing  by its estimate s gives an estimate for 
   (the estimated standard deviation, i.e., estimated
   standard error, of     ):

   (This estimate can also be denoted by      .)

3. The estimator     has a normal distribution (because it is 
    a linear function of independent normal rv’s).
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Inferences About the Slope Parameter 1

The variance of     equals the variance  2 of the random error 
(or, equivalently, of any Yi ), divided by                 . This 
denominator is a measure of how spread out the xi’s are 
about    .

We conclude that making observations at xi values that are quite 
spread out results in a more precise estimator of the slope 
parameter (smaller variance of     ), whereas values of xi all close 
to one another imply a highly variable estimator. 

Of course, if the xi’s are spread out too far, a linear model may 
not be appropriate throughout the range of observation.
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Inferences About the Slope Parameter 1

Theorem

The assumptions of the simple linear regression model 
imply that the standardized variable

has a t distribution with n – 2 df.
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A Confidence Interval for 1
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A Confidence Interval for 1

As in the derivation of previous CIs, we begin with a 
probability statement:

Manipulation of the inequalities inside the parentheses to 
isolate 1 and substitution of estimates in place of the 
estimators gives the CI formula.

A 100(1 – )% CI for the slope 1 of the true regression 
line is
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Example 

Variations in clay brick masonry weight have implications not 
only for structural and acoustical design but also for design of 
heating, ventilating, and air conditioning systems.

The article “Clay Brick Masonry Weight Variation” (J. of 
Architectural Engr., 1996: 135–137) gave a scatter plot of 
y = mortar dry density (lb/ft3) versus x = mortar air content (%) 
for a sample of mortar specimens, from which the following 
representative data was read:
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Example 

The scatter plot of this data certainly suggests the 
appropriateness of the simple linear regression model; there 
appears to be a substantial negative linear relationship 
between air content and density, one in which density tends 
to decrease as air content increases.

cont’d
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Example 

The values of the summary statistics required for calculation 
of the least squares estimates are

xi = 218.1   yi = 1693.6   xiyi = 24,252.54        = 3577.01

    = 191,672.90; n = 15

from which Sxy = –372.404, Sxx = 405.836,     = –.917622, 
  

    = 126.248889, 

SST = 454.163, SSE = 112.4432, and 

r2 = 1 – 112.4432/454.1693 = .752.

cont’d
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Example 

Roughly 75% of the observed variation in density can be 
attributed to the simple linear regression model relationship 
between density and air content. Error df is 15 – 2 = 13, 
giving s2 = SSE/(n-2) = 112.44/13 = 8.65 and s = 2.941.

The estimated standard deviation of     is

A confidence level of 95% requires t.025,13 = 2.160. The CI is

     –.918  (2.160)(.1460) = –.918  .315 = (–1.23, –.60)

cont’d
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Hypothesis-Testing Procedures
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Hypothesis-Testing Procedures

The most commonly encountered pair of hypotheses about 
1 is H0: 1 = 0 versus Ha: 1 ≠ 0. When this null hypothesis 
is true, Y  x = 0 independent of x. Then knowledge of x 
gives no information about the value of the dependent 
variable.

Null hypothesis: H0: 1 = 10

Test statistic value: t = 
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Hypothesis-Testing Procedures

Alternative Hypothesis     Alternative Hypothesis

Ha: 1 > 10                                   t  t,n – 2

Ha: 1 < 10                                   t  –t,n – 2

Ha: 1 ≠ 10                       either t  t/2,n – 2  or t  – t/2,n – 2

A P-value based on n – 2 can be calculated just as was 
done previously for t tests.

the test  statistic value is the t ratio  

t =        .
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Regression analysis in R
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Regression analysis in R

Fitting Linear Models in R

Description

lm is used to fit linear models (regression)

Command:
lm(formula, data, subset, ...) 

Example:
Model1 = lm(outcome ~ predictor)
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Example: Regression analysis in R

Robert Hooke (England, 1653-1703) was able to assess the relationship between 
the length of a spring and the load placed on it. He just hung weights of different 
sizes on the end of a spring, and watched what happened. When he increased 
the load, the spring got longer. When he reduced the load, the spring got 
shorter. And the relationship was more or less linear.

Let b be the length of the spring with no load.  When a weight of x kilograms is 
tied to the end of the spring, the spring stretches to a new length. 
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Example: Regression analysis in R

According to Hooke's law, the amount of stretch is proportional to 
the weight x. So the new length of the spring is

y = mx + b

In this equation, m and b are constants which depend on the 
spring. 

Their values are unknown and have to be estimated using 
experimental data.
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Hooke’s Law in R

Weight Length

0 kg 439.00 cm

2 439.12

4 439.21

6 439.31

8 439.40

10 439.50

Data below come from an experiment in which weights of various 
sizes were loaded on the end of a length of piano wire. 

The first column shows the weight of the load. The second column 
shows the measured length. With 20 pounds of load, this "spring" 
only stretched about 0.2 inch (10 kg is approximately 22 lb, 0.5 cm is 
approximately 0.2 in). 

Piano wire is not very stretchy!

439 cm is about 14.4 feet 
(the room needed to have a
fairly high ceiling)
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Regression analysis in R

x = c(0, 2, 4, 6, 8, 10) 
y = c( 439.00, 439.12, 439.21, 439.31, 439.40, 439.50)
plot( x, y, xlab = 'Load (kg)', ylab = 'Length (cm)' )
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Regression analysis in R

Hooke.lm = lm( y ~ x)

summary(Hooke.lm)

Residuals:
        1         2         3         4         5         6 
-0.010952  0.010762  0.002476  0.004190 -0.004095 -0.002381 

Coefficients:
             Estimate Std. Error  t value Pr(>|t|)    
(Intercept) 4.390e+02  6.076e-03 72254.92  < 2e-16 ***
x           4.914e-02  1.003e-03    48.98 1.04e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.008395 on 4 degrees of freedom
Multiple R-squared: 0.9983,     Adjusted R-squared: 0.9979 
F-statistic:  2399 on 1 and 4 DF,  p-value: 1.04e-06 
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Regression analysis in R

coefficients(Hooke.lm)
# (Intercept)            x 
# 439.01095238   0.04914286 

Hooke.coefs = coefficients(Hooke.lm)

Hooke.coefs[1]  
439.011 

Hooke.coefs[2]
0.04914286 

# expected stretch for x = 5kg
Hooke.coefs[1] + Hooke.coefs[2] * 5 = 439.2567 

If we knew that line for certain, then the estimated standard deviation of the actual stretch 
around that expected value would be:
Residual standard error: 0.008395
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Regression analysis in R

coefficients(Hooke.lm)
# (Intercept)            x 
# 439.01095238   0.0491428 

So, in the Hooke’s law,  m = 0.05 cm per kg, and b = 439.01 cm.

The method of least squares estimates the length of the spring under no 
load to be 439.01 cm. 

And each kilogram of load makes this particular spring stretch by an 
amount estimated as 0.05 cm on average. 

Note that in general correlation is not causation, but in this controlled 
experimental setting, the causation is clear and simple. This is an exception 
more than a rule in statistical modeling.
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Regression analysis in R

So, in the Hooke’s law,  m = 0.05 cm per kg, and b = 439.01 cm.

The method of least squares estimates the length of the spring 
under no load to be 439.01 cm. 
This is a bit longer than the measured length at no load (439.00 cm). 

A statistician would trust the least squares estimate over the 
measurement. Why? Because the least squares estimate takes 
advantage of all six measurements, not just one. Some of the 
measurement error is likely to cancel out. Of course, the six 
measurements are tied together by a solid theory: Hooke's law. 
Without the theory, the least squares estimate wouldn't be worth 
much.

example taken from analytictech.com
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Regression analysis in R

y.hat <- Hooke.coefs[1] + Hooke.coefs[2]* x
439.0110 439.1092 439.2075 439.3058 439.4041 439.5024

> predict(Hooke.lm)
439.0110 439.1092 439.2075 439.3058 439.4041 439.5024 

e.hat <- y - y.hat

mean( e.hat )
# -2.842171e-14

cbind( y, y.hat, e.hat )
#           y    y.hat        e.hat
# [1,] 439.00 439.0110 -0.010952381
# [2,] 439.12 439.1092  0.010761905
# [3,] 439.21 439.2075  0.002476190
# [4,] 439.31 439.3058  0.004190476
# [5,] 439.40 439.4041 -0.004095238
# [6,] 439.50 439.5024 -0.002380952 104___________________________________________________________________________________
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Regression analysis in R

plot( x, y, xlab = 'Load (kg)', ylab = 'Length (cm)' )
lines( x, y.hat, lty = 1, col = 'red' )
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Regression analysis in R

plot(y.hat, e.hat, xlab = 'Predicted y values',
  ylab = 'Residuals' )
abline(h = 0, col = 'red')

This plot doesn't 
look good, actually
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Regression analysis in R

qqnorm( e.hat, main = 'Residual Normal QQplot' )
abline( mean( e.hat ), sd( e.hat ), col = 'red' )

This plot
looks good
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 Inferences Concerning Y  x and the 
Prediction of Future Y Values
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Inference Concerning Mean of Future Y

Hooke.coefs = coefficients(Hooke.lm)
# (Intercept)            x 
# 439.01095238   0.04914286 

# expected stretch for x = 5kg
Hooke.coefs[1] + Hooke.coefs[2] * 5 = 439.2567 

If we knew that line for certain, then the estimated standard 
deviation of the actual stretch around that expected value would 
be:

Residual standard error: 0.008395

But we don’t know m and b for certain – we’ve just estimated them, 
and we know that their estimators are Normal random variables.
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Let x denote a specified value of the independent 
variable x. 

Once the estimates     and      have been calculated, 
    +    x can be regarded either as a point estimate of 
(the expected or true average value of Y when x = x) or as 
a prediction of the Y value that will result from a single 
observation made when x = x. 

The point estimate or prediction by itself gives no 
information concerning how precisely         has been 
estimated or Y has been predicted.

Inference Concerning Mean of Future Y
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This can be remedied by developing a CI for         and a 
prediction interval (PI) for a single Y value.

Before we obtain sample data, both     and     are subject to 
sampling variability—that is, they are both statistics whose 
values will vary from sample to sample. 

Suppose, for example, that β0 = 439 and β1 = 0.05.

Then a first sample of (x, y) pairs might give     = 439.35,

    = 0.048; a second sample might result in     = 438.52, 

    = 0.051; and so on. 

Inference Concerning Mean of Future Y
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It follows that    =    +    x itself varies in value from sample 
to sample, so it is a statistic. 

If the intercept and slope of the population line are the 
aforementioned values 439 and 0.05, respectively, and x 
=5kgs, then this statistic is trying to estimate the value 

439 + 0.05(5) = 439.25

The estimate from a first sample might be 
439.35 + 0.048(5) = 439.59, from a second sample might 
be 438.52 + 0.051(5) = 438.775 , and so on.

Inference Concerning Mean of Future Y
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Consider the value x = 10. 

Recall that because 10 is further than x = 5 from the “center 
of the data”, the estimated “y.hat” values are more variable. 

Inference Concerning Mean of Future Y
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In the same way, inferences about the mean Y value
    +    x are based on properties of the sampling 
distribution of the statistic    +    x.

Substitution of the expressions for     and     into    +    x 
followed by some algebraic manipulation leads to the 
representation of     +    x as a linear function of the Yi’s:

The coefficients d1, d2, …., dn in this linear function involve 
the xi’s and x, all of which are fixed. 

Inference Concerning Mean of Future Y
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Application of the rules to this linear function gives the 
following properties.
 
Proposition

Let   =    +     where x is some fixed value of x. Then

1. The mean value of    is

    Thus    +    x is an unbiased estimator for     +    x 
    (i.e., for       ).

Inference Concerning Mean of Future Y
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2. The variance of     is

    And the standard deviation      is the square root of this    
    expression. The estimated standard deviation of    +    x, 

    denoted by     or              , results from replacing  by  
    its estimate s:

3.     has a normal distribution.

Inference Concerning Mean of Future Y
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The variance of     +    x is smallest when x = x and 
increases as x moves away from x in either direction. 

Thus the estimator of Y  x is more precise when x is near
the center of the xi’s than when it is far from the values at 
which observations have been made. This will imply that 
both the CI and PI are narrower for an x near x than for an 
x far from x. 

Most statistical computer packages will provide both
    +    x and               for any specified x upon request.

Inference Concerning Mean of Future Y



117___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Inference Concerning Mean of Future Y
Hooke.coefs = coefficients(Hooke.lm)
# (Intercept)            x 
# 439.01095238   0.04914286 

> predict(Hooke.lm)
439.0110 439.1092 439.2075 439.3058 439.4041 439.5024 

# expected stretch for x = 5kg
Hooke.coefs[1] + Hooke.coefs[2] * 5 = 439.2567

> predict(Hooke.lm, se.fit=TRUE)
$fit
       1        2        3        4        5        6 
439.0110 439.1092 439.2075 439.3058 439.4041 439.5024 

$se.fit
[1] 0.006075862 0.004561497 0.003571111 0.003571111 
0.004561497 0.006075862
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Just as inferential procedures for β1 were based on the t 
variable obtained by standardizing β1, a t variable obtained 
by standardizing    +    x leads to a CI and test procedures 
here.

Theorem

The variable

has a t distribution with n – 2 df.

(12.5)

Inference Concerning Mean of Future Y
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A probability statement involving this standardized variable 
can now be manipulated to yield a confidence interval for

A 100(1 –  )% CI for the expected value of Y when 
x = x, is

This CI is centered at the point estimate for        and 
extends out to each side by an amount that depends on the 
confidence level and on the extent of variability in the
estimator on which the point estimate is based.

Inference Concerning Mean of Future Y
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Inference Concerning Mean of Future Y

preds =  predict(Hooke.lm, se.fit=TRUE)
$fit
439.0110 439.1092 439.2075 439.3058 439.4041 439.5024 

$se.fit
0.00608 0.00456 0.00357 0.00357 0.00456 0.00608

> plot( x, y, xlab = 'Load (kg)', ylab = 'Length (cm)',cex=2 )
> lines( x, y.hat, lty = 1, col = 'red' )
> preds =  predict(Hooke.lm, se.fit=TRUE)
> CI.ub = preds$fit + preds$se.fit*qt(.975,6-2)
> CI.lb = preds$fit - preds$se.fit*qt(.975,6-2)
> lines(x,CI.ub,lty=2,col="red")
> lines(x,CI.lb,lty=2,col="red")
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Inference Concerning Mean of Future Y
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Example: concrete

Corrosion of steel reinforcing bars is the most important 
durability problem for reinforced concrete structures. 

Carbonation of concrete results from a chemical reaction
that also lowers the pH value by enough to initiate 
corrosion of the rebar. 

Representative data on x = carbonation depth (mm) and 
y = strength (MPa) for a sample of core specimens taken 
from a particular building follows
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Example -- concrete cont’d
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Example -- concrete

Let’s now calculate a 95% confidence interval, for the mean 
strength for all core specimens having a carbonation depth 
of 45. The interval is centered at

The estimated standard deviation of the statistic     is

The 16 df t critical value for a 95% confidence level is 
2.120, from which we determine the desired interval to be

cont’d
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A Prediction Interval for a Future 
Value of Y
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A Prediction Interval for a Future Value of Y

Rather than calculate an interval estimate for        , an investigator may 
wish to obtain a range or an interval of plausible values for the value of 
Y associated with some future observation when the independent 
variable has value x. 

Consider, for example, relating vocabulary size y to age of a child x. 
The CI  with x = 6 would provide a range that covers with 95% 
confidence the true average vocabulary size for all 6-year-old children. 

Alternatively, we might wish an interval of plausible values for the 
vocabulary size of a particular 6-year-old child. How can you tell that a 
child is “off the chart” for example?
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A Prediction Interval for a Future Value of Y

A CI refers to a parameter, or population characteristic, 
whose value is fixed but unknown to us. 

In contrast, a future value of Y is not a parameter but 
instead a random variable; for this reason we refer to an 
interval of plausible values for a future Y as a prediction 
interval rather than a confidence interval. 
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A Prediction Interval for a Future Value of Y

The error of prediction is Y – (    +    x),  a difference  
between two random variables. Because the future value Y 
is independent of the observed Yi’s,
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A Prediction Interval for a Future Value of Y

Furthermore, because E(Y) = β0 + β1x
 and expectation of

   +    x = β0 + β1x, the expected value of the prediction
error is E(Y – (    +    x) = 0. 

It can then be shown that the standardized variable

has a t distribution with n – 2 df. 
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A Prediction Interval for a Future Value of Y

Manipulating to isolate Y between the two inequalities 
yields the following interval.

A 100(1 – )% PI for a future Y observation to be made 
when x = x is

(12.7)
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A Prediction Interval for a Future Value of Y

The interpretation of the prediction level 100(1 – )% is 
similar to that of previous confidence levels—if is used 
repeatedly, in the long run the resulting interval will actually 
contain the observed y values 100(1 – )% of the time.

Notice that the 1 underneath the initial square root symbol 
makes the PI (12.7) wider than the CI (12.6), though the 
intervals are both centered at     +    x.

Also, as n      , the width of the CI approaches 0, whereas 
the width of the PI does not (because even with perfect 
knowledge of β0 and β1, there will still be randomness in 
prediction).
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Example -- concrete

Let’s return to the carbonation depth-strength data example 
and calculate a 95% PI for a strength value that would 
result from selecting a single core specimen
whose depth is 45 mm. Relevant quantities from that 
example are

          = 13.79              = .7582           s = 2.8640

For a prediction level of 95% based on n – 2 = 16  df, the 
t critical value is 2.120, exactly what we previously used for 
a 95% confidence level. 
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Example -- concrete

The prediction interval is then

Plausible values for a single observation on strength when 
depth is 45 mm are (at the 95% prediction level) between 
7.51 MPa and 20.07 MPa.

The 95% confidence interval for mean strength when depth 
is 45 was (12.18, 15.40). The prediction interval is much 
wider than this because of the extra (2.8640)2 under the 
square root. 

cont’d
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Example -- concrete cont’d
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Diagnostic Plots
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Diagnostic Plots

The basic plots that many statisticians recommend for an
assessment of model validity and usefulness are the 
following:

1. ei
 (or ei) on the vertical axis versus xi  on the horizontal   

    axis

2. ei
 (or ei) on the vertical axis versus    on the horizontal 

    axis

3.     on the vertical axis versus yi on the horizontal axis

4. A histogram of the standardized residuals
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Diagnostic Plots

Plots 1 and 2 are called residual plots (against the independent 
variable and fitted values, respectively), whereas Plot 3 is fitted 
against observed values. 

If Plot 3 yields points close to the 45-deg line [slope +1 through (0, 0)], 
then the estimated regression function gives accurate predictions of 
the values actually observed. 

Provided that the model is correct, neither residual plot should exhibit 
distinct patterns. 

The residuals should be randomly distributed about 0 according to a 
normal distribution, so all but a very few standardized residuals 
should lie between –2 and +2  (i.e., all but a few residuals within 2 
standard deviations of their expected value 0). 
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Example 

139___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Difficulties and Remedies
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Difficulties and Remedies

Although we hope that our analysis will yield plots like 
these, quite frequently the plots will suggest one or more 
of the following difficulties:

1. A nonlinear relationship between x and y is appropriate.

2. The variance of  (and of Y) is not a constant 2 but 
    depends on x.

3. The selected model fits the data well except for a very 
    few discrepant or outlying data values, which may 
have 
    greatly influenced the choice of the best-fit function.
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Difficulties and Remedies

4. The error term  does not have a normal distribution.

5. When the subscript i indicates the time order of the 
    observations, the i’s exhibit dependence over time.

6. One or more relevant independent variables have been 
    omitted from the model.
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Difficulties and Remedies

(a) (b)

(a) nonlinear relationship;                      (b) nonconstant variance;

Plots that indicate abnormality in data:
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Difficulties and Remedies

                   .

(c) (d)

(c) discrepant observation;                                        (d) observation with large influence;

Plots that indicate abnormality in data:

cont’d
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Difficulties and Remedies

              .

(e) (f)

Plots that indicate abnormality in data:

      (e) dependence in errors;                                           (f) variable omitted

cont’d
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Difficulties and Remedies

For a more comprehensive discussion, one or more of the 
references on regression analysis should be consulted. If 
the residual plot exhibits a curved pattern, then a 
nonlinear function of x may be used.

Figure 13.2(a)
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Difficulties and Remedies

The residual plot below suggests that, although a straight-
line relationship may be reasonable, the assumption that 
V(Yi) = 2 for each i is of doubtful validity.

Using advanced methods like weighted LS (WLS), as can 
more advanced models, is recommended for inference.
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Difficulties and Remedies

When plots or other evidence suggest that the data set 
contains outliers or points having large influence on the 
resulting fit, one possible approach is to omit these 
outlying points and recompute the estimated regression 
equation. 

This would certainly be correct if it were found that the 
outliers resulted from errors in recording data values or 
experimental errors. 

If no assignable cause can be found for the outliers, it is 
still desirable to report the estimated equation both with 
and without outliers omitted. 
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Difficulties and Remedies

Yet another approach is to retain possible outliers but to 
use an estimation principle that puts relatively less 
weight on outlying values than does the principle of least 
squares.

One such principle is MAD (minimize absolute deviations), 
which selects     and     to minimize  | yi – (b0 + b1xi |.

Unlike the estimates of least squares, there are no nice 
formulas for the MAD estimates; their values must be 
found by using an iterative computational procedure. 
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Difficulties and Remedies

Such procedures are also used when it is suspected that 
the i’s have a distribution that is not normal but instead 
have “heavy tails” (making it much more likely than for 
the normal distribution that discrepant values will enter 
the sample); robust regression procedures are those that 
produce reliable estimates for a wide variety of 
underlying error distributions. 

Least squares estimators are not robust in the same way 
that the sample mean X is not a robust estimator for .
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Difficulties and Remedies

When a plot suggests time dependence in the error terms, 
an appropriate model will include a time variable –

For that -- take the Time Series course taught by Math or 
the Applied Math department.
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So far we have learned about LR…
-how to fit SLR – estimates the true linear relationship between the outcome 
and a predictor. Interpret slope as the Average Change in Y when X increases 
by 1 unit

-how to do inference in SLR (is the slope significant?)

-we learned to check for assumption violations (non-constant variance, non-
linear patterns in residuals, autocorrelation?)

- we learned to use standardized residuals instead of ordinary residuals

-we learned about outliers (outliers in Y space – those points with large 
residuals)

-we also learned about the more sneaky kind: the outliers in the X space – 
they almost always have a small ordinary residual (that residual’s variance is 
tiny, since their X is far away from the mean of all X’s), so they won’t be 
visible on the ordinary residual plot (but they may be big on the standardized 
res plot). They are called leverage points (points with high leverage)

-When the removal of leverage points results in a very different line, then they 
are called influential points. 152___________________________________________________________________________________

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

And today we will talk about MLR

-how to fit MLR – estimate the true linear relationship (regression surface) 
between the outcome and a predictor. Interpret slope on X1 as the Average 
Change in Y when X1 increases by 1 unit, holding all other X’s constant

-Will learn how to do inference for one slope, several slopes (is a subset of 
slopes significant – does this subset of variables ”matter”?), or all slopes.

- Same approach to checking for assumption violations (non-constant 
variance, non-linear patterns in residuals)

- Again, must use standardized residuals instead of ordinary residuals

- Must think about outliers (outliers in Y space – those points with large 
residuals)

-Must think about *any* outliers in the X space – leverage points -- they may 
have a small ordinary residual. 
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Multiple Regression Analysis

Definition
The multiple regression model equation is

Y = 0 + 1x1 + 2x2 + ... + kxk +  

where E() = 0 and V() =  
2.

In addition, for purposes of testing hypotheses and 
calculating CIs or PIs, it is assumed that  is normally 
distributed.

This is not a regression line any longer, but a regression 
surface.
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Multiple Regression Analysis

Let                     be particular values of x1,...,xk. 
Then 

Thus just as 0 + 1x describes the mean Y value as a 
function of x in simple linear regression, the true 
(or population) regression function 0 + 1x1 + . . . + kxk 
gives the expected value of Y as a function of x1,..., xk.

The i’s are the true (or population) regression 
coefficients.
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Multiple Regression Analysis

The regression coefficient 1 is interpreted as the expected 
change in Y associated with a 1-unit increase in x1 while 
x2,..., xk are held fixed.

Analogous interpretations hold for 2,..., k.

Thus, these coefficients are called partial or adjusted 
regression coefficients.

In contrast, the simple regression slope is called the 
marginal (or unadjusted) coefficient.

156___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Models with Interaction and Quadratic Predictors

For example, f an investigator has obtained observations 
on y, x1, and x2, one possible model is Y = 0 + 1x1 + 
2x2 + . 

However, other models can be constructed by forming
predictors that are mathematical functions of x1 and/or 
x2.

For example, with             and x4 = x1x2, the model

Y = 0 + 1x1 + 2x2 + 3x3 + 4x4 + 

also has the general MR form.
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Models with Interaction and Quadratic Predictors

In general, it is not only permissible for some predictors
to be mathematical functions of others but also often 
desirable in the sense that the resulting model may be 
much more successful in explaining variation in y than 
any model without such predictors. This is still “linear 
regression”, even though the relationship between 
outcome and predictors may not be.

For example, the model 

Y = 0 + 1x + 2x2 +   is still MLR with 
k = 2, x1 = x, and x2 = x2.

158___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Example  -- travel time

The article “Estimating Urban Travel Times: 
A Comparative Study” (Trans. Res., 1980: 173–175) 
described a study relating the dependent variable 
y = travel time between locations in a certain city and the 
independent variable x2 = distance between locations. 

Two types of vehicles, passenger cars and trucks, were 
used in the study.

Let

159___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Example – travel time

One possible multiple regression model is

Y = 0 + 1x1 + 2x2 + 

The mean value of travel time depends on whether a 
vehicle is a car or a truck:

mean time = 0 + 2x2 when x1 = 0 (cars)

mean time = 0 + 1 + 2x2 when x1 = 1 (trucks)

cont’d

160___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Example  -- travel time

The coefficient 1 is the difference in mean times between 
trucks and cars with distance held fixed; if 1 > 0, on 
average it will take trucks the same amount of time 
longer to traverse any particular distance than it will for 
cars. 

A second possibility is a model with an interaction
predictor:

Y = 0 + 1x1 + 2x2 + 3x1x2 + 

cont’d
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Example – travel time

Now the mean times for the two types of vehicles are

mean time = 0 + 2x2 when x1 = 0

mean time = 0 + 1 + (2 + 3 )x2 when x1 = 1

Does it make sense to have different intercepts for cars 
and truck? (Think about what intercept actually means). 

So, what would be a third model you could consider?

cont’d
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Example – travel time

For each model, the graph of the mean time versus 
distance is a straight line for either type of vehicle, as 
illustrated in Figure 13.14.

Regression functions for models with one dummy variable (x1) and one quantitative variable x2

Figure 13.14

(a) no interaction (b) interaction

cont’d
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Example -- travel

The two lines are parallel for the first (no-interaction)
model, but in general they will have different slopes 
when the second model is correct. 

For this latter model, the change in mean travel time 
associated with a 1-mile increase in distance depends on 
which type of vehicle is involved—the two variables 
“vehicle type” and “travel time” interact. 

Indeed, data collected by the authors of the cited article 
suggested the presence of interaction.

cont’d
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Example -- travel

But, does it make sense to have different intercepts for cars 
and truck? (Think about what intercept actually means). 

So, what would be a third model you could consider?

Y = 0 + 2x2 + 3x1x2 + 

Now the mean times for the two types of vehicles are

mean time = 0 + 2x2 for cars

mean time = 0 + (2 + 3 )x2 for trucks

cont’d


