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Random variable

Random variable is a measurable quantity whose outcome is 
unknown  (random) upfront, before an experiment or study is 
carried out.
Examples:

• Outcome of a coin toss 
• A random card selected from a deck
• Commuting time on a particular morning

Experiment -- associated with a carefully controlled laboratory 
conditions 

Study – more general, can be observational (eg. doing surveys)

Sidenote: this distinction is at the core of causal vs non-causal 
relationships. Observational studies (and even some 
experiments) can only give non-causal interpretations. 
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Sample Space 

The set of all possible outcomes of an experiment or study.

Thus, if there are n units under study, we have n random variables, 
and n possible sets of outcomes.

Example – continuous outcomes:
Study: Measuring the birth weight of babies born in 2000. 

Sample space for each baby birth weight: positive real numbers

All positive reals? Well, no. But… we don’t know what the upper 
bound is

In that case,  we can say “in theory yes, all real numbers” with the 
understanding that big numbers are really really unlikely (eg, really 
chubby babies – say those over 15 pounds - are improbable (1 in a 
billion or fewer)   

4____________________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder   STAT4000/5000

Examples of sample spaces

The simplest study is the one where we only have two 
possible outcomes and a single random variable:

- tossing a single coin once

 - examining a single fuse to see whether it is defective 

The sample space set for the first example is 

S = {H(ead), T(ails)} = {H, T}

The sample space set for the second example can be 
abbreviated as     

S= {N, D}, where N stands for “not defective”, D stands for 
“defective”. 
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Events

So, the sample space is the set of all possible outcomes

An event is any collection (subset) of outcomes from the 
sample space     

An event is simple if it consists of exactly one outcome

An event is compound if it consists of more than one 
outcome

We say that an event (set) “A“ occurred if the experimental 
outcome is contained in the set A. 
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Events - example

Study: birth weight and gestational age for a random baby born 
in 2000

– note this is a 2-dimensional RV (time, weight)

Sample space: R+ x R+ (the upper right quadrant of R2)

Event A = small for gestational age (SGA) 

This event occurs if our experiment returns a baby whose weight 
is in the bottom 10% of all baby birth weights for that particular 
gestational age. 

This event is the subset bounded by the line time=0, the line 
weight=0, and the boundary defined by SGA(t) 
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Events – example 

Consider an exam where there are 3 true/false questions.

So, for each question, you can select T (true) or F (false) 

There are eight possible outcomes that make up the sample 
space of all exam answers {TTT, TTF, TFT, FTT, TFF, FTF, FFT, 
FFF}.

We can make 2 choices at each of the 3 questions => total 
number of all possible answers is 
2 * 2 * 2  = 23 

There are eight simple events, among which are 
E1 = {TTT} and E8 = {FFF}.   
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Set Theory

An event is a set, so set theory can be used to study events 
and do their probability calculus.

Definition

The complement of an event A, denoted by A’  

(pronounced A-prime, or complement of A, or not-A) 

 is the set of all outcomes in the sample space S  not 
contained in A
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Some Relations from Set Theory

Definitions

The union of two events A and B, 

     denoted A  B and read “A or B”

is the event consisting of all outcomes that are either in A or 
in B or in both 

Both A and B can occur, or just one of them can occur

The intersection of two events A and B
denoted A  B and read “A and B”

is the event consisting of all outcomes that are in both A and 
B.
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Set Theory

Sometimes A and B have no outcomes in common, so that the 
intersection of A and B contains no outcomes.

Definition

Let       denote the null event (the event consisting of no 
outcomes whatsoever).

When A  B =        , A and B are said to be mutually 
exclusive or disjoint events.

When one occurs, the other cannot occur. One precludes the 
other.
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Set Theory

The operations of union and intersection can be extended to 
more than two events. 

For any three events A, B, and C, the event A  B  C is the 
set of outcomes contained in at least one of the three events, 
whereas A  B  C is the set of outcomes contained in all 
three events. 

Given events A1, A2, A3 ,..., these events are said to be 
mutually exclusive (or pairwise disjoint) if no two events have 
any outcomes in common.
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Venn diagrams

We  can also use Venn diagrams for sets and events.

To construct a Venn diagram, draw a rectangle whose interior 
will represent the sample space  S 

Then any event A is represented as the interior of a closed
curve (simplest: circle) contained in S

Can shade the desired subset which event is of interest
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Axioms of Probability

For each event A, the number P(A) is called the probability of 
the event A.

P(A) quantifies how likely is that A will occur.

For something to be a proper probability, we have to have:

Axiom 1: For any event A, P(A)  0.

Axiom 2: P( S ) = 1.
Axiom 3:
If A1, A2, A3,… is a (possibly infinite) collection of disjoint 
events: 

                 P(A1  A2  A3  …) =
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More Probability Properties

Propositions

1. For any event A, P(A) + P(A’) = 1, from which
P(A’) = 1 – P(A). 

2. P(A  B) = P(A) + P(B) – P(A  B) 

3. P(A  B  C) = P(A) + P(B) + P(C) – P(A  B) 
                          – P(A  C) – P(B  C) + P(A  B  C) 
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What is Probability?

Probability can be understood as a limit of relative frequency.

Consider an experiment that can be repeatedly performed, in 
an identical and independent fashion, indefinitely.

An example: repeated coin tossing

The longer we perform the experiment, the more stable the 
relative frequency of “tails” will get 

It will converge on the probability P(tails)
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Interpreting Probability

Let’s say we perform an experiment n times

The event A will occur (the outcome will be in the set A) in 
some of the replications. In other replications, A will not occur.

Let n(A) denote the number of replications on which A does 
occur. 

Then the ratio n(A)/n is called the relative frequency of 
occurrence of the event A in the sequence of n replications of 
the experiment.
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Example (Devore)

Let A be the event that 

“a package sent within the state of California for 2nd 
day delivery actually arrives within one day” 

The results from sending 10 such packages (the first 10 
replications of the experiment) are as follows:
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Example (Devore)

The relative frequency n(A)/n fluctuates rather substantially 
over the course of the first 50 replications.
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Example (Devore)

But as the number of replications continues to increase, the 
relative frequency stabilizes at a limiting value, P(A).

Behavior of relative frequency -- Long-run stabilization
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Interpreting Probability (Devore)

In that case, a statement such as “the probability of a package 
being delivered within one day of mailing is .6” means that out 
of a large number of mailed packages, roughly 60% will arrive 
within one day (and the other 40% will arrive in 2 or more 
days). 

For coin tossing, we say “fair coin” if

P(H) = P(T) = .5

and if we were to toss a fair coin 1000 times, the relative 
frequency of heads will be very close to 50%
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Assigning Probabilities to events

There are several ways we can learn about probabilities of 
events:

1) Empirically – ie, assess probabilities based on experience

2) Analytically, using counting and combinatorial tricks

• Counting

• Permutations

• Combinations

3) Via computer simulations  – simulating repeated 
experiments, and finding out relative frequencies over a 
large number of simulations
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Analytical computation example  

A train has five cars. Suppose a commuter is twice as likely to 
select the middle car (#3) then to select either adjacent car 
(#2 or #4), and is twice as likely to select any of the adjacent 
cars then to select any of the end cars (#1 or #5).

Let pi = P(car i is selected) = P(Ei), for i = 1…5.  All Ei   are 
mutually exclusive. Thus we have

p3 = 2p2 = 2p4 and p2 = 2p1 = 2p5 = p4. 

This gives

    1 = P(Ei) = p1 + 2p1 + 4p1 + 2p1 + p1 = 10p1

implying p1 = p5 = .1, p2 = p4 = .2, p3 = .4. The probability that 
one of the three middle cars is selected (a compound event) is 
then p2 + p3 + p4 = .8.        
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Counting: enumeration for equally likely 
outcomes

Think of drawing a card at random from a deck of cards.

If there are N equally likely outcomes, the probability for each is 

So if we have a compound event, like A = {king}, we have to 
count the number N(A) of outcomes contained in an event A, 
and divide by the number of outcomes in a sample space:

In the case of the above event A = {king}, P(A) = 4/52
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Counting: k-tuples 

A family requires the services of an obstetrician and a 
pediatrician. There are two medical clinics, each having 2 
obstetricians and 3 pediatricians.

The family wishes to select both doctors from the same clinic. In 
how many ways can this be done? 

Denote the obstetricians by O1, O2, O3, and O4 and the 
pediatricians by P1, . . . ., P6. 

Then we wish the number of pairs (Oi, Pj) for which Oi and Pj  are 
associated with the same clinic.

There are 4 obstetricians, and for each there are 3 choices of 
pediatricians within the same clinic, so there are 12  possibilities.
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Counting: k-tuples

If a six-sided die is tossed five times, then the outcome is an 
ordered collection of five numbers -- a “5-tuple”.

We will call an ordered collection of k objects a k-tuple

There are 

n1n2 · · ·  nk 

possible k-tuples.

When k=2, like on the previous slide, it is simply called a 
“pair”.
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Permutations and Combinations

A subset where order matters is called a permutation. 

The number of permutations of size k that can be formed from 
n objects will be denoted by Pk,n. 

An unordered subset is called a combination.

One way to denote the number of combinations is Ck,n or:

           

(pronounced: “n choose k”).
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Permutations (k-tuples from the same set, without 
replacement)

Example: A college of engineering has 7 departments. Each 
has one representative on the student council. 

From these 7 representatives, one is to be chosen chair, 
another vice-chair, and one secretary.

How many ways are there to select these three officers? 

That is, how many permutations (order matters!) of size 3 can 
be formed from the 7 representatives?
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Permutations

The chair can be selected from any department, i.e., in 
n1 = 7 ways.

Once we select the chair, there are n2 = 6 departments left – 
so 6 ways to select the vice-chair, and hence 7  6 = 42 (chair, 
vice-chair) pairs. 

Then, after having selected the chair and vice chair, there 
remain 5 ways to select the secretary.

This gives

P 3,7 = (7)(6)(5) = 210

This is the number of permutations of size 3 that can be 
formed from 7 distinct individuals. 
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Permutations – formula 

Recall, for any positive integer n,

n! = n(n – 1)(n – 2) · · · · (2)(1) 
(0! = 1 by definition). 

Then, it follows:       P3,7 = (7)(6)(5) =

More generally,

    Pk,n = n(n – 1)(n – 2) · · · · (n – (k – 2))(n – (k – 1)) 

or
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Combinations

Combinations are subsets where order does not matter

Again refer to the student council scenario, and suppose that 
3 of the 7 representatives are to be selected to attend a 
convention.

The order of selection is not important; all that matters is 
which three get selected. 

We can simply take the result we got for P3,7  and divide it by 
the number of ways you can arrange 3 elements 

…. 3! is the number of ways we can order a set of 3
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Combinations

Generalizing ….

Notice that                   and                           since there is only 
one way to 

choose a set of (all) n elements or a set of no elements.

 

Also, since there are n subsets of size 1, we have:

  
32____________________________________________________________________________________________

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder   STAT4000/5000

  Examples 

A particular iPod playlist contains 100 songs, 10 of which are 
by the Beatles. 

Suppose the shuffle feature is used to play the songs in 
random order, without repetition. 

What is the probability that the 1st Beatles song heard is the 
5th song played?

In order for this event to occur, it must be the case that the 
first 4 songs played are not Beatles’ songs (NBs) and that the 
5th song is by the Beatles (B).
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The number of ways to select the first five songs is 100(99)
(98)(97)(96). 

The number of ways to select these five songs so that the first 
four are NBs and the next is a B is 90(89)(88)(87)(10). 

Therefore the desired probability is the ratio of the number of 
outcomes for which the event of interest occurs to the number 
of possible outcomes:

cont’d
Using permutations  and combinations in computing probabilities
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Conditional Probability

Can the information “event B has occurred” affect the probability of 
event A?

For example, 
A  = having a particular disease in the presence of certain 
symptoms.

B = blood test result is negative

The updated (post-test) probability of disease will be different than 
pre-test (if the test is at all valuable)

We will use the notation P(A | B) to represent the conditional 
probability of  A given that B has occurred. B is called the 
“conditioning event.”
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Conditional Probability

The conditional probability is expressed as a ratio of 
unconditional probabilities -- 

    probability of the intersection of the two events 
----------------------------------------------------------------------

probability of the conditioning event B 

Given that B has occurred, the relevant sample space is 
no longer S but it boils down to only the outcomes in B.
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Example – conditional probability

Parts are assembled in two different assembly lines, A and A’
Line A uses older equipment than A’, so it is somewhat less 
reliable.

Suppose on a given day line A has assembled 8 parts, 
whereas A’ has produced 10.

From the 8 parts from A, 
2 were defective (B) and 
6 as nondefective (B’). 

From the 10 parts from A’, 
1 was defective (B) and 
9 nondefective (B’).
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Example 

The sales manager randomly selects 1 of these 18 parts for a 
test. 

Then before the test: 

 P(line A part selected) = P(A)  =           = 8/18 = .44

cont’d

If the test revealed that the part is defective –  event B={defective part} has 
occurred. Then the selected part must have been one of the 3 total defective 
parts made that day. 

What is the chance that it was made by the line A?
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The Multiplication Rule for P(A ∩ B)

The definition of conditional probability yields the following 
result:

The Multiplication Rule
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Independence

The definition of conditional probability enables us to revise 
the probability P(A) originally assigned to A when we are 
subsequently informed that another event B has occurred; the 
new probability of A is P(A | B).

In our examples, it was frequently the case that 
P(A | B) differed from the unconditional probability P(A), 

indicating that the information “B has occurred” resulted in a 
change in the chance of A occurring.

Often the chance that A will occur or has occurred is not 
affected by knowledge that B has occurred, so that 
P(A | B) = P(A). 
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Independence

It is then natural to regard A and B as independent events, 
meaning that the occurrence or nonoccurrence of one event 
has no bearing on the chance that the other will occur.

Definition

Two events A and B are independent if P(A | B) = P(A) and 
are dependent otherwise.

The definition of independence might seem “unsymmetric” 
because we do not also demand that P(B | A) = P(B).

Example: A = winning a lottery, and B = raining today.
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Independence

However, using the definition of conditional probability and 
the multiplication rule,

                    P(B | A) =                           =          

The right-hand side is P(B) if and only if P(A | B) = P(A) 
(independence), so the equality in the definition implies the 
other equality (and vice versa). 

It is also straightforward to show that if A and B are 
independent, then so are the following pairs of events: 
(1) A’ and B, 

(2) A and B’ 

(3) A’ and B’ 
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The Multiplication Rule for P(A  B)

A and B are independent if and only if (iff)
                  P(A  B) = P(A)  P(B)     

The verification of this multiplication rule is as follows:

           P(A  B) = P(A | B)  P(B) = P(A)  P(B)    

where the second equality is valid iff A and B are independent.
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The Multiplication Rule for P(A  B)

In summary: independence means that: 

P(A|B) = P(A) 

P(B|A) = P(B)

P(A  B) = P(A)P(B) 

P(A  B) = P(A) + P(B) – P(A  B)  = P(A) + P(B) – P(A)P(B)
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Independence of More Than Two Events

Definition
Events A1, . . . , An are mutually independent if for every k 
(k = 2, 3, . . . , n) and every subset of indices i1, i2, . . . , ik,
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Bayes’ Theorem

The computation of a posterior probability                from 
given prior probabilities P(Ai) and conditional probabilities
           

The general rule is just a simple application of the 
multiplication rule, goes back to Reverend Thomas Bayes, who 
lived in the eighteenth century.

Recall that events A1, . . . , Ak are mutually exclusive if no two 
have any common outcomes. The events are exhaustive if one 
Ai must occur, so that A1  … Ak = S 
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The Law of Total Probability

Let A1, . . . , Ak be mutually exclusive and exhaustive events. 
Then for any other event B we have that B can be broken up 
into pieces belonging to each of the A’s:

B = ( B  A1 )  ( B  A2 ) ...  ( B  Ak )  

Thus:

A
1 

A
4 

A
3 

A
1 

A
2 

B
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Example 

An individual has 3 different email accounts:

70% of messages come into account #1,  

20% come into account #2 

10% into account #3.

Of the messages in account #1, only 1% are spam, whereas 
the corresponding percentages for accounts #2 and #3 are 
2% and 5%, respectively.

What is the probability that a randomly selected message is 
spam?

  
48____________________________________________________________________________________________

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder   STAT4000/5000

Example 

To answer this question, let’s first establish some notation:

Ai = {message is from account  i}  for i = 1, 2, 3, 

B = {message is spam}

Then the given percentages imply that 

  P(A1) = .70, P(A2) = .20, P(A3) = .10

cont’d
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Example 

Now it is simply a matter of substituting into the equation for 
the law of total probability:

P(B) = (.01)(.70) + (.02)(.20) + (.05)(.10) = .016

In the long run, 1.6% of this individual’s messages will be 
spam.

This is like a weighted average of the spam probabilities, 
weighted by the probability of each account.

cont’d
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Example 

P(B) = (.01)(.70) + (.02)(.20) + (.05)(.10) = .016

Now, say we randomly selected a message and it was indeed 
spam. What is the probability that it came from account #1?

In other words, we are looking for P(A1 | B)

We can find that by P(A1 | B) = P(A1   B) / P(B)  

where  P(A1   B)  = P(B | A1) P(A1), and P(B) was found above.

Then, P(A1 | B)  = (.01)(.70)  /   0.016 = 43.75%

cont’d
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Bayes’ Theorem

In general, let A1, A2, . . . , Ak be a collection of k mutually 
exclusive and exhaustive events with prior probabilities P(Ai) 

Then for any other event B for which P(B) > 0, the posterior 
probability of Aj given that B has occurred is

Example: 

A1 = person has the flu (probability of flu = P(A1) = 5%)

A2 = he/she doesn’t have the flu (probability P(A2) = 100-5=% = 95%)

B = flu test came back positive

What is the updated probability that the person has the flu, P(A1 | B) = ?
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Bayes’ Theorem: 
diagnostic test example

A1 = person has the flu (probability of flu = “flu prevalence” at the time = P(A1) = 5%)

A2 = he/she doesn’t have the flu (probability P(A2) = 100-5=% = 95%)

B = flu test came back positive

What is the updated probability that the person has the flu, P(A1 | B) = ?

 

We first have to find the numerator,  P(B|A1) P(A1) =  P(B|A1) * 0.05

The term P(B|A1) is the probability of a positive test given that the person actually has 
the flu. It is called “true positive” or “sensitivity” in diagnostic testing and it is the ability 
of the test to correctly detect the presence of the disease. 

This probability is determined by the test manufacturers and FDA, who usually do 
validation. For flu, let’s assume sensitivity is 0.98. 

Then, the numerator is 0.98*0.05 = 0.049
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Bayes’ Theorem: 
diagnostic test example

A1 = person has the flu (probability of flu = “flu prevalence” at the time = P(A1) = 5%)

A2 = he/she doesn’t have the flu (probability P(A2) = 100-5=% = 95%)

B = flu test came back positive

What is the updated probability that the person has the flu, P(A1 | B) = ?

 

Next, we have to find the denominator.

The denominator is the total probability of B, and can be found by summing over all the 
ways we can get B (positive test) to happen: the test can be positive correctly (true 
positive), or positive incorrectly (false positive).

False positive is based on specificity, or probability that the test is negative for a disease-
free person (true negative). In fact, false positive = 1-specificity. Let’s assume that 
specificity is 0.96 for the flu test. Then:

P(B) =   P(B|A1) P(A1)   +  P(B|A2) P(A2)  =    0.98*0.05 + (1-0.96)*0.95 = 0.087, or 8.7% 
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Bayes’ Theorem: 
diagnostic test example

A1 = person has the flu (probability of flu = “flu prevalence” at the time = P(A1) = 5%)

A2 = he/she doesn’t have the flu (probability P(A2) = 100-5=% = 95%)

B = flu test came back positive

What is the updated probability that the person has the flu, P(A1 | B) = ?

Sensitivity of the test = P(B|A1) = 0.98  (true positive rate)

Specificity of the test = P(B’|A2) = 0.96  (true negative rate)

Given all the above, using Bayes theorem we find that the probability of having the flu, 
given that the test came back positive, is  

P(B|A1) P(A1)    /     [ P(B|A1) P(A1)   +  P(B|A2) P(A2) ] =

0.98*0.05 / [0.98*0.05 + (1-0.96)*0.95] = 0.049/0.087 = 0.563 = 56.3%

This number is close to a coin flip! It does go up with increased reliability of the test – i.e. 
higher test specificity and test sensitivity.


