Week 3: Discrete Distributions

At the end of this week, you should be able to:

1) Distinguish between a continuous and discrete random variable.
2) Distinguish between a random variable and a realization of a random variable.
3) Define a probability mass function for a discrete random variable X.
4) Calculate probabilities using pmfs.
5) Identify situations for which a Bernoulli, binomial, geometric, or Poisson distribution works as a good model.
6) Calculate the probability that a Bernoulli, Binomial, Negative Binomial, Geometric, or Poisson rv takes on particular value or set of values.
7) Define the cumulative distribution function (cdf) for a rv. Calculate the cdf for given values of x.

Two Types of Random Variables

Discrete random variable

- finite number of values (eg, pass/fail or $1 / 0$)
- countably many values - can be infinitely many, eg $\{1,2,3, \ldots\}$

Continuous random variable:

1. Its possible values = real numbers \mathbf{R}, an interval of \mathbf{R}, or a disjoint union of intervals from \mathbf{R} (e.g., $[0,10] \cup[20,30])$
2. No one single value of the variable has positive probability,
that is, $P(X=c)=0$ for any possible value c.
Only intervals have postitive prob: for example, $P(X$ in $[3,6])=0.5)$

Examples of random variables

Discrete random variable:

- $X=$ number of heads in 50 consecutive coin flips
- Y = number of times a cell phone goes off during any class

Continuous random variable:

- $Z_{1}=$ Length of your commuting time to class
- $Z_{2}=$ Baby birth weight

Examples of a realization of random variables

Discrete random variable:

- $\mathrm{X}=$ number of heads in 50 consecutive coin flips
- $X=27$ heads in a particular sequence of 50 coin flips
- We call 27 a particular value (realization) of X
- Oftentimes, we'll use $X=x$ to denote a generic realization of X
- $Y=$ number of times a cell phone goes off during any class
- Eg, Y = 3 during today's class
- $\mathrm{Y}=\mathrm{y}$ in general

Continuous random variable:

- $Z_{1}=\mathrm{z}=15.2 \mathrm{~min}$ is the length of your commuting time to today's class
- $Z_{2}=\mathrm{z}=4123 \mathrm{~g}$ is the birth weight of a baby born at noon today at BCH

Probability distribution of a discrete random variable

1. Probability density (or mass) function of X
2. Describes how probability is distributed among the various possible values of the random variable X

$$
p(X=x) \text {, for each value } x \text { that } X \text { can take }
$$

3. Often, $p(X=x)$ is simply written as $p(x)$. Note $p(X=x)$ is

$$
P(\text { all } s \in S: X(s)=x) .
$$

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder	STAT 4000/5000

Example, cont

x	0	1	2	3	4	5	6
$p(x)$.05	.10	.15	.25	.20	.15	.10

From here, we can find many things:

1) Probability that at most 2 computers are in use:

$$
\begin{aligned}
P(X \leq 2) & =P(X=0 \text { or } 1 \text { or } 2) \\
& =p(0)+p(1)+p(2) \\
& =.05+.10+.15=.30
\end{aligned}
$$

2) Probability that half or more computers are in use:

$$
1-P(X \leq 2)=1-0.30=0.70
$$

3) Probability that there are 3 or 4 computers free:

$$
P(X=3)+P(X=4)=0.45
$$

Example

A lab has 6 computers.
Let X denote the number of these computers that are in use during lunch hour -- $\{0,1,2 \ldots 6\}$.

Suppose that the probability mass function of X is as given in the following table:

x	0	1	2	3	4	5	6
$p(x)$.05	.10	.15	.25	.20	.15	.10

The Cumulative Distribution Function

The cumulative distribution function (CDF):
$F(x)$ of a discrete rv variable X with $\operatorname{pmf} p(x)$ is defined for every real number x by

$$
F(x)=P(X \leq x)=\sum_{y: y \leq x} p(y)
$$

For any number $x, F(x)$ is the probability that the observed value of X will be at most x.

Example

$P(X \leq 0)=P(X=0)=.5$ $p(x)=\left\{\begin{array}{cc}.500 & x=0 \\ .167 & x=1 \\ .333 & x=2 \\ 0 & \text { otherwise }\end{array}\right.$
$P(X \leq 1)=p(0)+p(1)=.500+.167=.667$
$P(X \leq 2)=p(0)+p(1)+p(2)=.500+.167+.333=$.
For any x satisfying $0 \leq x<1, P(X \leq x)=.5$.
$P(X \leq 1.5)=P(X \leq 1)=.667$
$P(X \leq 20.5)=1$
$F(y)$ will equal the value of F at the closest possible value of Y to the left of y.

Notice that $P(X<1)<P(X \leq 1)$ since the latter includes the probability of the X value 1 , whereas the former does not.

More generally, when X is discrete and x is a possible value of the variable, $P(X<x)<P(X \leq x)$.

If X is continuous, $P(X<x)=P(X \leq x)$.

Example

Consider a university having 15,000 students and let $X=$ of courses for which a randomly selected student is registered. The pmf of X is given to you as follows:

x	1	2	3	4	5	6	7
$p(x)$.01	.03	.13	.25	.39	.17	.02
Number registered	150	450	1950	3750	5850	2550	300

$\mu=1 p(1)+2 p(2)+\ldots+7 p(7)$
$=(1)(.01)+2(.03)+\ldots+(7)(.02)$
$=.01+.06+.39+1.00+1.95+1.02+.14$
$=4.57$

Back to theory: Mean (Expected Value) of X

Let X be a discrete rv with set of possible values D and $\operatorname{pmf} p$ (x). The expected value or mean value of X, denoted by $E(X)$ or μ_{x} or just μ, is

$$
E(X)=\mu_{X}=\sum_{x \in D} x \cdot p(x)
$$

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder
STAT 4000/5000

The Expected Value of a Function

Sometimes interest will focus on the expected value of some function $h(X)$ rather than on just $E(X)$.

Proposition

If the rv X has a set of possible values D and $\operatorname{pmf} p(x)$, then the expected value of any function $h(X)$, denoted by $E[h(X)]$ or $\mu_{h(X)}$, is computed by

$$
E[h(X)]=\sum_{D} h(x) \cdot p(x)
$$

That is, $E[h(X)]$ is computed in the same way that $E(X)$ itself is, except that $h(x)$ is substituted in place of x.

Example

A computer store has purchased 3 computers of a certain type at $\$ 500$ apiece. It will sell them for $\$ 1000$ apiece. The manufacturer has agreed to repurchase any computers still unsold after a specified period at $\$ 200$ apiece.

Let X denote the number of computers sold, and suppose that

$$
p(0)=.1, p(1)=.2, p(2)=.3 \text { and } p(3)=.4 .
$$

With $h(X)$ denoting the profit associated with selling X units, the given information implies that
$h(X)=$ revenue - cost $=$
$=1000 X+200(3-X)-1500=800 x-900$
The expected profit is then

$$
\begin{aligned}
& E[h(X)]=h(0) p(0)+h(1) p(1)+h(2) p(2)+h(3) p(3) \\
& \quad=(-900)(.1)+(-100)(.2)+(700)(.3)+(1500)(.4)=\$ 700
\end{aligned}
$$

Rules of Averages (Expected Values)

The $h(X)$ function of interest is often a linear function $a X+b$. In this case, $E[h(X)]$ is easily computed from $E(X)$.

Proposition

$$
E(a X+b)=a E(X)+b
$$

(Or, using alternative notation, $\mu_{a X+b}=a \quad \mu_{x}+b$)
To paraphrase, the expected value of a linear function equals the linear function evaluated at the expected value $E(X)$.

In the previous example, $h(X)$ is linear - so:
$E(X)=2, E[h(x)]=800(2)-900=\$ 700$, as before.
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder

Example

Let X denote the number of books checked out to a randomly selected individual (max is 6). The pmf of X is as follows:

x	1	2	3	4	5	6
$p(x)$.30	.25	.15	.05	.10	.15

The expected value of X is easily seen to be $\mu=2.85$.
The variance of X is

$$
V(X)=\sigma^{2}=\sum_{x=1}^{6}(x-2.85)^{2} \cdot p(x)
$$

$$
\begin{aligned}
& =(1-2.85) 2(.30)+(2-2.85)^{2}(.25)+\ldots+ \\
& (6-2.85)^{2}(.15)=3.2275
\end{aligned}
$$

The standard deviation of X is $\sigma=\sqrt{3.2275}=1.800$.

A Shortcut Formula for σ^{2}

The number of arithmetic operations necessary to compute σ^{2} can be reduced by using an alternative formula.
$V(X)=\sigma^{2}=E\left(X^{2}\right)-[E(X)]^{2}$
In using this formula, $E\left(X^{2}\right)$ is computed first without any subtraction; then $E(X)$ is computed, squared, and subtracted (once) from $E\left(X_{2}\right)$.

Rules of Variance

$V(a X+b)=\sigma_{a x+b}^{2}=a^{2} \sigma_{x a}^{2}$
$\sigma_{a x+b}=|a| \cdot \sigma_{x}$
The absolute value is necessary because a might be negative, yet a standard deviation cannot be.

Usually multiplication by " a " corresponds to a change of scale, or of measurement units (e.g., kg to lb or dollars to euros).

Rules of Variance

The variance of $h(X)$ is the expected value of the squared difference between $h(X)$ and its expected value:

$$
V[h(X)]=\sigma_{h(x)}^{2}=\quad \sum_{D}\{h(x)-E[h(X)]\}^{2} \cdot p(x)
$$

When $h(X)=a X+b, a$ linear function,

$$
h(x)-E[h(X)]=a x+b-(a \mu+b)=a(x-\mu)
$$

then

$$
\begin{array}{ll}
\hline \text { Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder } & \text { STAT 4000/5000 }
\end{array}
$$

Families of random variables

Discrete random variables can be categorized into different distribution families (Bernoulli, Geometric, Poisson...).

Each family corresponds to a model for many different real-world situations.

Each family has many members

Each specific member has its own particular set of parameters.

Bernoulli random variable

Any random variable whose only possible values are 0 and 1 is called a Bernoulli random variable.

This distribution is specified with a single parameter:

$$
\pi_{1}=p(X=1)
$$

Which corresponds to the proportion of 1's.
From here, $p(X=0)=1-p(X=1)$

PMF shorthand: $P(X=x)=\pi_{1} \times\left(1-\pi_{1}\right)^{(1-x)}$
Example: fair coin-tossing $\pi_{1}=0.5$

Binomial random variable

Binomial random variable counts the total number of 1 's:

Definition

The binomial random variable X associated with a binomial experiment consisting of n trials is defined as

$$
X=\text { the number of } 1 \text { 's among the } n \text { trials }
$$

This is an identical definition as $X=$ sum of n independent and identically distributed Bernoulli random variables

Binomial experiments

Binomial experiments conform to the following:

1. The experiment consists of a sequence of n identical and independent Bernoulli experiments called trials, where n is fixed in advance:
2. Each trial outcome is a Bernoulli variable - ie, each trial can result in only one of 2 possible outcomes. We generically denote one oucome by "success" (S, or 1) and "failure" (F, or 0).
3. The probability of success $P(S)$ (or $P(1))$ is identical across trials; we denote this probability by p.
4. The trials are independent, so that the outcome on any particular trial does not influence the outcome on any other trial.

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder	STAT 4000/5000

$X \sim \operatorname{Bin}(n, p)$
Suppose, for example, that $n=3$. Then the sample space elements are: SSS SSF SFS SFF FSS FSF FFS FFF

From the definition of X, which simply counts the number of S for each member of the sample space, $X(S S F)=2, X(S F F)=1$, and so on.

Possible values for X in an n-trial experiment are $x=0,1,2, \ldots, n$.

We will often write $X \sim \operatorname{Bin}(n, p)$ to indicate that X is a binomial $r v$ based on n Bernoulli trials with success probability p.

For $n=1$, the binomial r.v. reverts to the Bernoulli r.v.

Example - Binomial r.v.

A coin is tossed 6 times.

From the knowledge about fair coin-tossing probabilities,

$$
p=P(H)=P(S)=0.5 \text {. }
$$

Thus, if $X=$ the number of heads among six tosses, then

$$
X \sim \operatorname{Bin}(6,0.5) .
$$

Then, $P(X=3)=\binom{6}{3}(.5)^{3}(.5)^{3}=20(.5)^{6}=.313$
In general, $P(X=x)=(n$ choose $x) p \times(1-p)^{(n-x)}$

The probability that at least three come up heads is
$P(3 \leq X)=\sum_{x=3}^{6}\binom{6}{x}(.5) \times(.5) 6-x$
$=.656$
and the probability that at most one come up heads is
$P(X \leq 1)=.109$

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder
STAT 4000/5000

Mean and Variance of Binomial r.v.

If $X \sim \operatorname{Bin}(n, p)$, then
$E(X)=n p$,
$V(X)=n p(1-p)=n p q$, and
$\sigma_{x}=\sqrt{n p q}$
(where $q=1-p$).
the product of the number of trials and the probability of success on a single trial.

Mean and Variance of a Binomial R.V.

The mean value of a Bernoulli variable is $\mu=p$
($=0 \times(1-p)+1 \times p)$

So, the expected number of S 's on any single trial is p.
Since a binomial experiment consists of n trials, intuition suggests that for $X \sim \operatorname{Bin}(n, p)$ we have

- $E(X)=n p$

Example

Example

A biased coin is tossed 10 times, so that the odds of "heads" are 3:1. Then, the number of heads follows

$$
X \sim \operatorname{Bin}(10, .75)
$$

Then, $E(X)=n p=(10)(.75)=7.5$,

$$
V(X)=n p q=10(.75)(.25)=1.875
$$

and $\sigma=\sqrt{1.875}$

$$
=1.37
$$

Example, cont.

Again, even though X can take on only integer values, $E(X)$ need not be an integer.

If we perform a large number of independent binomial experiments, each with $n=10$ trials and $p=.75$, then the average number of 1 's per experiment will be close to 7.5 .

The probability that X is within 1 standard deviation of its mean value is
$P(7.5-1.37 \leq X \leq 7.5+1.37)=P(6.13 \leq X \leq 8.87)$
$=P(X=7$ or 8$)$
$=.532$.
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder
STAT $4000 / 5000$

Sidenote: simulating Bernoulli and Binomial variables in R

Sidenote: simulating Bernoulli and Binomial variables in R

Geometric random variable -- Example

Starting at a fixed time, we observe the gender of each newborn child at a certain hospital until a boy (B) is born.

Let $p=P(B)$, assume that successive births are independent, and let X be the number of births observed.

Then

$$
\begin{aligned}
p(1) & =P(X=1) \\
& =P(B) \\
& =p
\end{aligned}
$$

Sidenote: simulating Bernoulli and Binomial variables in R

Example, cont.

$$
\begin{aligned}
p(2) & =P(X=2) \\
& =P(G B) \\
& =P(G) P(B) \\
& =(1-p) p
\end{aligned}
$$

and

$$
\begin{aligned}
p(3) & =P(X=3) \\
& =P(G G B) \\
& =P(G) P(G) P(B) \\
& =(1-p)^{2} p
\end{aligned}
$$

Example, cont.

Continuing in this way, a general formula emerges:

$$
p(x)=\left\{\begin{array}{cc}
(1-p)^{x-1} p & x=1,2,3, \ldots \\
0 & \text { otherwise }
\end{array}\right.
$$

The parameter p can assume any value between 0 and 1 .

Depending on what parameter p is, we get different members of the geometric distribution.

Sidenote: simulating Geometric variables in R
R function for simulating geometric random variables is: $X=\operatorname{rgeom}(n, \operatorname{prob})$

NOTE: In R, X represents the number of failures in a sequence of Bernoulli trials before a success occurs.

Where:

n is the number of simulations,
prob is the probability of success on each trial.

$$
\begin{array}{ll}
\hline \text { Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder } & \text { STAT 4000/5000 }
\end{array}
$$

Sidenote: simulating Geometric variables in R

Sidenote: simulating Geometric variables in R

Sidenote: simulating Geometric variables in R

The Negative Binomial Distribution

The Negative Binomial Distribution

1. The experiment is a sequence of independent trials where each trial can result in a success (S) or a failure (F)
2. The probability of success is constant from trial to trial
3. The experiment continues (trials are performed) until a total of r successes have been observed
4. The random variable of interest is
$X=$ the number of failures that precede the r th success
5. In contrast to the binomial rv , the number of successes is fixed and the number of trials is random.

The Negative Binomial Distribution

Possible values of X are $0,1,2, \ldots$.
Let $n b(x ; r, p)$ denote the pmf of X. Consider

$$
n b(7 ; 3, p)=P(X=7)
$$

the probability that exactly 7 F's occur before the 3 rd S.
In order for this to happen, the 10 th trial must be an S and there must be exactly 2 S's among the first 9 trials. Thus

$$
n b(7 ; 3, p)=\left\{\binom{9}{2} \cdot p^{2}(1-p)^{7}\right\} \cdot p=\binom{9}{2} \cdot p^{3}(1-p)^{7}
$$

Generalizing this line of reasoning gives the following formula for the negative binomial pmf.
$\overline{\text { Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder }}$ STAT 4000/5000

The Negative Binomial Distribution

The pmf of the negative binomial rv X with parameters $r=$ number of S^{\prime} s and $p=P(S)$ is

$$
n b(x ; r, p)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x} \quad x=0,1,2, \ldots
$$

Then,

$$
E(X)=\frac{r(1-p)}{p} \quad V(X)=\frac{r(1-p)}{p^{2}}
$$

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder	STAT 4000/5000

Simulating negative binomial random variables in R

The Hypergeometric Distribution

Example

Last week the IT office received 20 service orders for problems with printers: 8 were laser printers and 12 were inkjets

A sample of 5 of these orders is to be sent out for a customer satisfaction survey.

What is the probability that exactly x (where x can be any of these numbers: $0,1,2,3,4$, or 5) of the 5 selected service orders were for inkjet printers?

The Hypergeometric Distribution

1. The population consists of N elements (a finite population)
2. Each element can be characterized as a success (S) or failure (F)
3. There are M successes in the population, and $N-M$ failures
4. A sample of n elements is selected without replacement, in such a way that each sample of n elements is equally likely to be selected

The random variable of interest is
$X=$ the number of S 's in the sample of size n

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder STAT 4000/5000

Example

- Here, the population size is $N=20$,
- the sample size is $n=5$
- the number of S 's (inkjet $=S$) is 12
- The number of F s is 8

Consider the value $x=2$. Because all outcomes (each consisting of 5 particular orders) are equally likely,
$P(X=2)=h(2 ; 5,12,20)=\quad \frac{\text { number of outcomes having } X=2}{\text { number of possible outcomes }}$

$$
h(2 ; 5,12,20)=\frac{\binom{12}{2}\binom{8}{3}}{\binom{20}{5}}
$$

The Hypergeometric Distribution

If X is the number of S 's in a completely random sample of size n drawn from a population consisting of $M \quad S$'s and ($N-M$) Fs, then the probability distribution of X, called the hypergeometric distribution, is given by

$$
P(X=x)=h(x ; n, M, N)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}
$$

for x, an integer, satisfying
$\max (0, n-N+M) \leq x \leq \min (n, M)$.

The Hypergeometric Distribution

Proposition

For hypergeometric rv X having $\operatorname{pmf} h(x ; n, M, N)$:

$$
E(X)=n \cdot \frac{M}{N} \quad V(X)=\left(\frac{N-n}{N-1}\right) \cdot n \cdot \frac{M}{N} \cdot\left(1-\frac{M}{N}\right)
$$

The ratio M / N is the proportion of S 's in the population. If we replace M / N by p in $E(X)$ and $V(X)$, we get

$$
\begin{aligned}
& E(X)=n p \\
& V(X)=\left(\frac{N-n}{N-1}\right) \cdot n p(1-p)
\end{aligned}
$$

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder	STAT 4000/5000

Example

In the animal-tagging example,
$n=10, M=5$, and $N=25$, so $p=\frac{5}{25}=.2$
and

$$
\begin{aligned}
& E(X)=10(.2)=2 \\
& V(X)=\frac{15}{24}(10)(.2)(.8)=(.625)(1.6)=1
\end{aligned}
$$

If there are actually 25 animals of this type in the region, what is the $E(X)$ and $V(X)$?

Example

Suppose the population size N is not actually known, so the value x is observed and we wish to estimate N.

It is reasonable to equate the observed sample proportion of S 's, x / n, with the population proportion, M / N, giving the estimate

$$
\hat{N}=\frac{M \cdot n}{x}
$$

$$
\text { If } M=5, n=10 \text {, and } x=2 \text {, then }
$$

$$
\hat{N}=25
$$

Hypergeometric in R

```
rhyper(nn, m, n, k)
```

Where
nn -- number of simulations
m -- number of successes in the population
n -- number of failures in the population
k -- size of the sample

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder
STAT 4000/5000

Hypergeometric in R

The Poisson Distribution

The Poisson Probability Distribution

Poisson r.v. describes the total number of events that happen in a certain time period.
Eg:

- arrival of vehicles at a parking lot in one week
- number of gamma rays hitting a satellite per hour
- number of neurons firing per minute

A discrete random variable X is said to have a Poisson distribution with parameter $\mu(\mu>0)$ if the pmf of X is

$$
p(x ; \mu)=\frac{e^{-\mu} \cdot \mu^{x}}{x!} \quad x=0,1,2,3, \ldots
$$

The Poisson Probability Distribution

It is no accident that we are using the symbol μ for the Poisson parameter; we shall see shortly that μ is in fact the expected value of X.

The letter e in the pmf represents the base of the natural logarithm; its numerical value is approximately 2.71828 .

The Mean and Variance of Poisson

Proposition

If X has a Poisson distribution with parameter μ, then $E(X)=V(X)=\mu$.

These results can be derived directly from the definitions of mean and variance.

The Poisson Probability Distribution

It is not obvious by inspection that $p(x ; \mu)$ specifies a legitimate pmf, let alone that this distribution is useful.

First of all, $p(x ; \mu)>0$ for every possible x value because of the requirement that $\mu>0$.

The fact that $\Sigma p(x ; \mu)=1$ is a consequence of the Maclaurin series expansion of e^{μ} (check your calculus book for this result):

$$
\begin{equation*}
e^{\mu}=1+\mu+\frac{\mu^{2}}{2!}+\frac{\mu^{3}}{3!}+\cdots=\sum_{x=0}^{\infty} \frac{\mu^{x}}{x!} \tag{3.18}
\end{equation*}
$$

Example

Let X denote the number of mosquitoes captured in a trap during a given time period.

Suppose that X has a Poisson distribution with $\mu=4.5$, so on average traps will contain 4.5 mosquitoes.

The probability that a trap contains exactly five mosquitoes is

$$
P(X=5)=\frac{e^{-4.5}(4.5)^{5}}{5!}=.1708
$$

Example

The probability that a trap has at most five is

$$
\begin{aligned}
P(X \leq 5) & =\sum_{x=0}^{5} \frac{e^{-4.5}(4.5)^{x}}{x!} \\
& =e^{-4.5}\left[1+4.5+\frac{(4.5)^{2}}{2!}+\cdots+\frac{(4.5)^{5}}{5!}\right] \\
& =.7029
\end{aligned}
$$

Example

Example continued...

Both the expected number of mosquitos trapped and the variance of the number trapped equal 4.5 , and

$$
\begin{aligned}
\sigma_{x} & =\sqrt{\mu} \\
& =\sqrt{4.5} \\
& =2.12 .
\end{aligned}
$$

rpois(n, lambda)

Where
n -- the number of simulations lambda -- the mean number

The Poisson Distribution as a Limit

 Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder

The Poisson Distribution as a Limit

The approximation is of limited use for $n=30$, but the accuracy is better for $n=100$ and much better for $n=300$.

The rationale for using the Poisson distribution in many situations is provided by the following proposition.

Proposition

Suppose that in the binomial pmf $b(x ; n, p)$, we let $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that $n p$ approaches a value $\mu>0$. Then $b(x ; n, p) \rightarrow p(x ; \mu)$.

According to this proposition, in any binomial experiment in which n is large and p is small, $b(x ; n, p) \approx p(x ; \mu)$, where $\mu=n p$. As a rule of thumb, this approximation can safely be applied if $n>50$ and $n p<5$.

Example

A publisher takes great pains to ensure that its books are free of typographical errors: the probability of any given page containing at least 1 such error is 005 .

If the errors are independent from page to page, what is the probability that one of the 400-page novels will contain exactly one page with errors? At most three pages with errors?

With S denoting a page containing at least one error and F an error-free page, the number X of pages containing at least one error is a binomial rv with $n=400$ and $p=.005$, so $n p=2$.

Example

We need to find out
$P(X=1)=b(1 ; 400, .005) \approx p(1 ; 2) \quad=\frac{e^{-2}(2)^{1}}{1!}=.270671$
The binomial value is $b(1 ; 400, .005)=.270669$, so the approximation is very good

Similarly,
$P(X \leq 3) \approx \sum_{x=0}^{3} p(x, 2)=\sum_{x=0}^{3} e^{-2} \frac{2^{x}}{x!}$

The Poisson Process

The Poisson Process

A very important application of the Poisson distribution arises in connection with the occurrence of events of some type over time.

Events of interest might be visits to a particular website, pulses of some sort recorded by a counter, email messages sent to a particular address, accidents in an industrial facility, or cosmic ray showers observed by astronomers at a particular observatory.

Example

Suppose photons arrive at a plate at an average rate of six per minute, ie. $\alpha=6$.

To find the probability that in a $0.5-\mathrm{min}$ interval at least one photon is received, note that the number of photons in such an interval has a Poisson distribution with parameter $\alpha t=6(0.5)=3$ (0.5 min is used because α is expressed as a rate per minute).

Then with $X=$ the number of pulses received in the $30-$ sec interval,

$$
P(1 \leq X)=1-P(X=0)=1-\frac{e^{-3}(3)^{0}}{0!}=.950
$$

The Poisson Process

$P_{k}(t)=e^{-\alpha t}(\alpha t)^{k} / k!$ so that the number of events during a time interval of length t is a Poisson rv with parameter $\mu=\alpha t$.

The expected number of events during any such time interval is then αt, so the expected number during a unit interval of time is α.

The occurrence of events over time as described is called a Poisson process; the parameter α specifies the rate for the process.

