Week 3: Discrete Distributions

At the end of this week, you should be able to:

1) Distinguish between a continuous and discrete random variable.

2) Distinguish between a random variable and a realization of a random
variable.

3) Define a probability mass function for a discrete random variable X.

4) Calculate probabilities using pmfs.

5) Identify situations for which a Bernoulli, binomial, geometric, or Poisson
distribution works as a good model.

6) Calculate the probability that a Bernoulli, Binomial, Negative Binomial,
Geometric, or Poisson rv takes on particular value or set of values.

7) Define the cumulative distribution function (cdf) for a rv. Calculate the cdf
for given values of x.

Two Types of Random Variables

Discrete random variable:

* finite number of values (eg, pass/fail or 1/0)
* countably many values - can be infinitely many, eg{1,2,3,...}

Continuous random variable:

1. Its possible values = real numbers R, an interval of R, or a disjoint union of
intervals from R (e.g., [0, 10] U [20, 30])

2. No one single value of the variable has positive probability,
that is, P(X = ¢) = O for any possible value c.

Only intervals have postitive prob: for example, P(X in [3,6]) = 0.5)
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Examples of random variables Examples of a realization of random variables
Discrete random variable:
Discrete random variable: * X = number of heads in 50 consecutive coin flips
* X =number of heads in 50 consecutive coin flips * X'=27 heads in a particular sequence of 50 coin flips
* Y = number of times a cell phone goes off during any class * We call 27 a particular value (realization) of X
* Oftentimes, we'll use X = x to denote a generic realization of X
Continuous random variable: * Y = number of times a cell phone goes off during any class
* Eg, Y = 3 during today’s class
* Z, = Length of your commuting time to class * Y =yin general
* Z, = Baby birth weight
Continuous random variable:
* Z,=z =152 min is the length of your commuting time to today’s class
* Z, =z = 4123g is the birth weight of a baby born at noon today at BCH
4
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Probability distribution of a discrete random variable Example

A lab has 6 computers.
1. Probability densit function of X
robability density (or mass) function o Let X denote the number of these computers that are in use

during lunch hour -- {0, 1, 2... 6}.
2. Describes how probability is distributed among the various

possible values of the random variable X Suppose that the probability mass function of X'is as given in
the following table:
p(X=x), for each value x that X can take
X | 0 1 2 3 4 5 6

3. Often, p(X=x) is simply written as p(x). Note p(X=x) is p(x) | 05 10 15 25 20 15 10

P(alls € S : X(s) = x).
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Example, cont ot The Cumulative Distribution Function

x|0 1 2 3 4 5 6

pw |05 a0 a5 25 20 s 0 The cumulative distribution function (CDF):

F(x) of a discrete rv variable X with pmf p(x)
From here, we can find many things: is defined for every real number x by
1) Probability that at most 2 computers are in use:

PX<2)=P(X=0or1or?2) Fix)=PX<x) = E p(y)

= p(0) +p(1) + p(2) yiy=x
=.05+10+15 =30 .
2) Probability that half or more computers are in use: For any number x, F(x) is the probability that the observed
1-PX <2)=1-030=070 value of X will be at most x.

3) Probability that there are 3 or 4 computers free:
P(X = 3) + P(X=4) = 0.45
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Example S0 x=0

d67  x =1
px) = _
PX<0)=P(X=0)=.5 333 x=2
P(X <1) = p(0) + p(1) = .500 + 167 = .667 0  otherwise

P(X <2)=p(0) +p(1) + p(2) = .500 +.167 +.333 = ,
For any x satisfying O <x <1, P(X < x) =.5.
PX<15)=PX<1)=.667

P(X<20.5)=1

F (y) will equal the value of F at the closest possible value of Y to the left of

Notice that P(X < 1) < P(X < 1) since the latter includes the probability of the
X value 1, whereas the former does not.

More generally, when X is discrete and x is a possible value of the variable,
P(X < )% < P(X < x).

If X is continuous, P(X < x) = P(X < x).

Back to theory: Mean (Expected Value) of X

Let X be a discrete rv with set of possible values D and pmf p
(x). The expected value or mean value of X, denoted by E(X) or
Ux Or just w, is

EX) = py = 2 x°px)

xXeD
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Example The Expected Value of a Function
Consider a university having 15,000 students and let X = of Sometimes interest will focus on the expected value of some
courses for which a randomly selected student is registered. function h(X) rather than on just E(X).
The pmf of Xis given to you as follows:
. { 5 3 4 5 6 7 Proposition .
If the rv X has a set of possible values D and pmf p(x), then the
p(x) 01 03 13 25 39 17 02 ;
expected value of any function h(X), denoted by ETh(X)] or )
Number registered 150 450 1950 3750 5850 2550 300 is computed by
u=1p0)+2 p@)+.7 pl7) ELR(X)] = She) - p)
= (1)(01) + 2(.03) + ..+ (7)(.02) b
- 01+.06+39+100+195+1.02 + 14 That is, E[h(X)] is computed in the same way that E(X) itself is,
except that h(x) is substituted in place of x.
=457
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Example

A computer store has purchased 3 computers of a certain type at $500 apiece. It
will sell them for $1000 apiece. The manufacturer has agreed to repurchase any
computers still unsold after a specified period at $200 apiece.

Let X denote the number of computers sold, and suppose that
p(0)=1, p(1)=.2, p(2)=.3 and p(3)= 4.

With h (X) denoting the profit associated with selling X units, the given information
implies that
h(X) = revenue - cost =
=1000X +200(3 - X) - 1500 = 800X - 900

The expected profit is then
E[h(X)1 = h(0) p(O) + h(1) p(1) + h(2) p(2) + h(3) p(3)

= (-900)(.1) + (- 100)(.2) + (700)(.3) + (1500)(.4) = $700

Rules of Averages (Expected Values)

The h(X) function of interest is often a linear function aX + b. In
this case, E[h(X)] is easily computed from E(X).

Proposition
E(aX+b)=a E(X)+b
(Or, using alternative notation, u..,=a u+b)

To paraphrase, the expected value of a linear function equals
the linear function evaluated at the expected value

E(X).

In the previous example, h(X) is linear - so:

E(X)=2,E[h(x)]1=800(2)- 900 =%700, as before.

13 14
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The Variance of X Example
Definition Let X denote the number of books checked out to a randomly
Let X have pmf p(x) and expected value w. Then the variance selected individual (max is 6). The pmf of X is as follows:
of X, denoted by V(X) or o 2, is
X | ! 2 3 4 5 6
ViX) = %(x — W)’ px) = E[(X — p)’] () | 30 25 15 05 10 15
The expected value of X is easily seen to be u = 2.85.
. . The variance of Xis 6
The standard deviation (SD) of X is , )
(SD) VX) = 02 = 2 (x — 2.85)* p(x)
x=1
oy = Vol = (1-2.85)2(.30) + (2 - 2.85)2(25) + ... +
(6 - 2.85)2(.15) = 3.2275
Note these are population (theoretical) values, not sample The standard deviation of Xis o=+/32275 =1.800.
values as before. 15 16
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A Shortcut Formula for &2

The number of arithmetic operations necessary to compute o2
can be reduced by using an alternative formula.

VIX) = o2 = E(X2) - [E(X)]2

In using this formula, E(X2) is computed first without any
subtraction; then E(X) is computed, squared, and subtracted
(once) from E(X2).

Rules of Variance

The variance of h(X) is the expected value of the squared
difference between h(X) and its expected value:

VIh(X)1 = o= S {h(x) — E[h()]}* + p(x)
D

When h(X) = aX + b, a linear function,

h(x) - E[h(X)]=ax +b - (au+ b) = a(x - u)
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then
17 18
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Rules of Variance Families of random variables
V(aX +b) = O%uxp = a2 0% Discrete random variables can be categorized into different
distribution families (Bernoulli, Geometric, Poisson...).
Ogx+b = |Cl| T Oy
Each family corresponds to a model for many different
The absolute value is necessary because a might be negative, real-world situations.
yet a standard deviation cannot be.
Usually multiplication by “a” corresponds to a change of scale, Each family has many members
or of measurement units (e.g., kg to lb or dollars to euros).
Each specific member has its own particular set of parameters.
19 20
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Bernoulli random variable

Any random variable whose only possible values are O and 1 s
called a Bernoulli random variable.

This distribution is specified with a single parameter:
M= p(X=1)

Which corresponds to the proportion of 1s.
From here, p(X=0) = 1- p(X=1)

PMF shorthand: P(X= x) = mt,x(1-11, )0
Example: fair coin-tossing ;= 0.5
21
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Binomial experiments

Binomial experiments conform to the following:

1. The experiment consists of a sequence of n identical and independent
Bernoulli experiments called trials, where n is fixed in advance:

2. Each trial outcome is a Bernoulli variable - ie, each trial can result in
only one of 2 possible outcomes. We generically denote one oucome
by “success” (S, or 1) and “failure” (F, or O).

3. The probability of success P(S) (or P(1)) is identical across trials; we
denote this probability by p.

4. The trials are independent, so that the outcome on any particular trial
does not influence the outcome on any other trial.

22
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Binomial random variable

Binomial random variable counts the total number of I's:

Definition
The binomial random variable X associated with a binomial
experiment consisting of n trials is defined as

X = the number of I's among the n trials

This is an identical definition as X = sum of n independent and
identically distributed Bernoulli random variables

23
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X ~ Bin(n,p)

Suppose, for example, that n = 3. Then the sample space
elements are: SSS SSF SFS SFF FSS FSF FFS FFF

From the definition of X, which simply counts the number of S for
each member of the sample space, X(SSF) = 2, X(SFF) = 1, and so on.

Possible values for X'in an n-trial experiment are

We will often write X ~ Bin(n, p) to indicate that X is a binomial rv
based on n Bernoulli trials with success probability p.

For n =1, the binomial r.v. reverts to the Bernoulli r.v. o
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Example - Binomial r.v. Example ,
cont'd
A coin is tossed 6 times. The probability that at least three come up heads is
6
From the knowledge about fair coin-tossing probabilities, PB<X)= > (i) (.5)(.5)6-x
x=3
p=P(H)=P(S)= O.5.
=.656
Thus, if X = the number of heads among six tosses, then and the probability that at most one come up heads is
X ~ Bin(6,0.5).
PX<1)= .09
Then, PX=3) = (g) (5)5(5) = 20(5)¢ = 313
In general, P(X =x) =(nchoose x)px(1-p)nx
25 26
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Mean and Variance of a Binomial R.V. Mean and Variance of Binomial r.v.
If X ~ Bin(n, p), then
The mean value of a Bernoulli variable is u=p
(=0x(1-p)+1xp)
prmip E(X) = np,
So, the expected number of S's on any single trial is p.
V(X) = np(1 - p) = npq, and
Since a binomial experiment consists of n trials, intuition suggests that
for X ~ Bin(n, p) we have
ox= Vnpq
* E(X)=np
the product of the number of trials and the probability of (where g =1-p).
success on a single trial.
27 28
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Example

A biased coin is tossed 10 times, so that the odds of “heads”
are 3:1. Then, the number of heads follows

X~ Bin(10, .75)

Then, E(X) = np = (10)(.75) = 7.5,
V(X) = npq = 10(.75)(.25) =1.875,

ando= /1875
=137.

29
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Example, cont.

cont'd

Again, even though X can take on only integer values, E(X)
need not be an integer.

If we perform a large number of independent binomial
experiments, each with n = 10 trials and p = .75, then the
average number of 1's per experiment will be close to 7.5.

The probability that X is within 1 standard deviation of its mean
value is

P(7.5-137<X<75+137)=P(6.13 < X < 8.87)
=P(X=7or8)
=.532.
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Sidenote: simulating Bernoulli variables in R

R function for simulating binomial random variable realizations
is:

rbinom(n, size, prob)

Where:

n is the number of simulations,

size isthe number of Bernoulli trials (1 or more)
prob is the probability of success on each trial.

rbinom(n, 1, prob) generates n Bernoullirandom
variable realizations.

31
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Sidenote: simulating Bernoulli and Binomial variables in R
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Sidenote: simulating Bernoulli and Binomial variables in R
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Sidenote: simulating Bernoulli and Binomial variables in R
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Geometric random variable -- Example

Starting at a fixed time, we observe the gender of each
newborn child at a certain hospital until a boy (B) is born.

Let p = P(B), assume that successive births are independent,
and let X be the number of births observed.

Then
p(1) = P(X = 1)

- P(B)

=p
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Example, cont.

p(2) = PX = 2)

= P(GGB)
= P(G) P(G) P(B)
=(1-plp
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cont'd
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Example, cont.

cont'd

Continuing in this way, a general formula emerges:

) {(1—p)"1p x=1,2,3,...
x =
P 0 otherwise

The parameter p can assume any value between O and 1.

Depending on what parameter p is, we get different members
of the geometric distribution.

37
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Sidenote: simulating Geometric variables in R

R function for simulating geometric random variables is:
X = rgeom(n, prob)

NOTE: In R, X represents the number of
failures in a sequence of Bernoulli trials
before a success occurs.

Where:
n is the number of simulations,
prob is the probability of success on each trial.
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Sidenote: simulating Geometric variables in R
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Sidenote: simulating Geometric variables in R
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Sidenote: simulating Geometric variables in R
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The Negative Binomial
Distribution

43
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The Negative Binomial Distribution

1. The experiment is a sequence of independent trials where each trial can
result in a success (S) or a failure (F)

3. The probability of success is constant from trial to trial

4. The experiment continues (trials are performed) until a
total of r successes have been observed

5. The random variable of interest is
X = the number of failures that precede the rth success

6. In contrast to the binomial rv, the number of successes is fixed and the
number of trials is random.

44
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The Negative Binomial Distribution
Possible values of Xare O, 1,2, .. ..

Let nb(x; r, p) denote the pmf of X. Consider
nb(7; 3, p) = P(X = 7)

The Negative Binomial Distribution

The pmf of the negative binomial rv X with parameters
r = number of S's and p = P(S) is

- d x+r—1
the probability that exactly 7 F's occur before the 3rd S. nb(x; 1, p) = ( 1 )pr(l ) x=0,1,2,...
r—
In order for this to happen, the 10t trial must be an S and there Then
must be exactly 2 S's among the first 9 trials. Thus ’
9 9 (1 — _rd—-p
nb(7; 3, p) = pAL—=p)pep= P = p) EX) = i =p VIX) = ———
Generalizing this line of reasoning gives the following formula
for the negative binomial pmf. 45 46
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Simulating negative binomial random variables in R Simulating negative binomial random variables in R
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The Hypergeometric Distribution

The Hypergeometric Distribution

1. The population consists of N elements (a finite population)
2. Each element can be characterized as a success (S) or failure (F)
3. There are M successes in the population, and N-M failures

4. A sample of n elements is selected without replacement, in such a way
that each sample of n elements is equally likely to be selected

The random variable of interest is
X = the number of S’s in the sample of size n
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Example Example cont'd
Last week the IT office received 20 service orders for * Here, the population size is N = 20,
problems with printers: 8 were laser printers and 12 were * the sample sizeis n=5
inkjets * the number of S's (inkjet = ) is 12
* The number of Fsis 8
A sample of 5 of these orders is to be sent out for a customer
satisfaction survey. Consider the value x = 2. Because all outcomes (each consisting
of 5 particular orders) are equally likely,
What is the probability that exactly x (where x can be any of ber of havine X — 2
these numbers: O, 1, 2, 3, 4, or 5) of the 5 selected service PIX < 2) < h(2- 5.12. 20) humber of outcomes having X =
orders were for inkjet printers? (X=2) = h(2;5.12. = n“r;l;erSOf possible outcomes
(5)6)
h(2;5,12,20) =
(5)
51 S 52
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The Hypergeometric Distribution The Hypergeometric Distribution
Proposition
If X is the number of S’s in a completely random sample of size For hypergeometric rv X having pmf h(x; n, M, N):
n drawn from a population consisting of M S’'s and
(N - M) F's, then the probability distribution of X, called the o=n-2 v - (N - ”) oM <1 _ M)
hypergeometric distribution, is given by N N-1 N N
(A:I><1>]l - 1)‘(4) The ratio M/N is the proportion of S's in the population. If we
P(X =x) = h(x;n,M,N) = —————— replace M/N by p in E(X) and V(X), we get
()
EX) = np
for x, an integer, satisfying
max (O,n - N +M) < x < min (n, M). N—n
V(X) = (ﬁ) ~np(l — p)
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Example Example cont'd
Five individuals from an animal population thought to be near In the animal-tagging example,
extinction in a certain region have been caught, tagged, and
released to mix into the population. n=10,M=5and N =25 sop =% =2
After they have had an opportunity to mix, a random sample and E(X) = 10(2) = 2
of 10 of these animals is selected. Let x = the number of
tagged animals in the second sample. VX) = 15 (10)(.2)(.8) = (.625)(1.6) = I
24 ' '
If there are actually 25 animals of this type in the region, what
is the E(X) and V(X)?
55 56
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Suppose the population size N is not actually known, so the
value x is observed and we wish to estimate N.

It is reasonable to equate the observed sample proportion of
S’s, x/n, with the population proportion, M/N, giving the
estimate

rhyper(nn, m, n, k)

Where
~ M-n . .
N =— nn -- number of simulations
m -- number of successes in the population
IfM=5,n=10, and x = 2, then n -- ngmber of failures in the population
k -- size of the sample
N =25.
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The Poisson Probability Distribution

Poisson r.v. describes the total number of events that happen
in a certain time period.
Eg:

- arrival of vehicles at a parking lot in one week

- number of gamma rays hitting a satellite per hour

- number of neurons firing per minute

A discrete random variable X is said to have a Poisson
distribution with parameter u (u > O) if the pmf of X'is

The Poisson Probability Distribution

It is no accident that we are using the symbol u for the Poisson
parameter; we shall see shortly that u is in fact the expected
value of X.

The letter e in the pmf represents the base of the natural
logarithm; its numerical value is approximately 2.71828.

A
plx; ) = 7““ x=0,1,2.3,...
x!
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The Poisson Probability Distribution The Mean and Variance of Poisson
It is not obvious by inspection that p(x; u) specifies a legitimate
pmf, let alone that this distribution is useful. Proposition
If X has a Poisson distribution with parameter u, then
First of all, p(x; u) > O for every possible x value because of the E(X) = V(X) = u
requirement that u > O.
These results can be derived directly from the definitions of
The fact that X p(x; u) = 1is a consequence of the Maclaurin mean and variance.
series expansion of e« (check your calculus book for this result):
M?_ M'} *“ M_r
et =1+p+ T F s = D (318
2! 3! = X!
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Let X denote the number of mosquitoes captured in a trap
during a given time period.

Suppose that X has a Poisson distribution with u = 4.5, so on

The probability that a trap has at most five is

5 ,—45 4.5)*
PX=5) = E#

x=0

average traps will contain 4.5 mosquitoes. (4.5)2 (4.5)
=e M +45 + i
2! 5!
The probability that a trap contains exactly five mosquitoes is
= .7029
e 43(4.5)°
PX =5) = T .1708
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Example continued...
rpois(n,lambda)
Both the expected number of mosquitos trapped and the
variance of the number trapped equal 4.5, and
Where
%= Vi n -- the number of simulations
lambda -- the mean number
= V45
=2.12.
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Poisson in R
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The Poisson Distribution as a Limit

The rationale for using the Poisson distribution in many
situations is provided by the following proposition.

Proposition
Suppose that in the binomial pmf b(x; n, p), we letn — o

andp — Oin such a way that np approaches a value u > O.
Then b(x; n, p) — p(x; ).

According to this proposition, in any binomial experiment in
which n is large and p is small, b(x; n, p) =~ p(x; u), where
wu =np. As a rule of thumb, this approximation can safely be

- eeeee——
: applied if n > 50 and np < 5.
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The Poisson Distribution as a Limit Example
The approximation is of limited use for n = 30, but the A publisher takes great pains to ensure that its books are free of
accuracy is better for n = 100 and much better for n = 300. typographi_cal errors: the probability of any given page containing at least 1
such error is .005.
P Bin, 1=30 (0): Bin. n=100 (x); Poisson (|)
7 If the errors are independent from page to page, what is the probability
0 that one of the 400-page novels will contain exactly one page with errors?
At most three pages with errors?
15
) With S denoting a page containing at least one error and F an error-free
107 page, the number X of pages containing at least one error is a binomial rv
osd . withn =400and p=.005,sonp=2.
0= T T T | I - X
0 2. 4 6 8 10
Comparing a Poisson and two binomial distributions
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Example

cont'd
We need to find out 22y
P(X = 1) = b(1; 400, .005) ~ p(1; 2) : = 270671
The binomial value is b(1; 400, .005) = .270669, so the
approximation is very good.
The Poisson Process
Similarly,
3 3 N 2}’
PX<3) = Xp2) = Ee*—l
x=0 x=0 X
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The Poisson Process Example
A very important application of the Poisson distribution arises Suppose photons arrive at a plate at an average rate of six per
in connection with the occurrence of events of some type over minute, ie. a = 6.
time.
To find the probability that in a O.5-min interval at least one
Events of interest might be visits to a particular website, pulses photon is received, note that the number of photons in such
of some sort recorded by a counter, email messages sent to a an interval has a Poisson distribution with parameter
particular address, accidents in an industrial facility, or cosmic at = 6(0.5) = 3 (0.5 min is used because « is expressed as a
ray showers observed by astronomers at a particular rate per minute).
observatory.
Then with X = the number of pulses received in the 30-sec
interval,
e3(3)°
P(ISX)ZI—P(XZO)ZI—TZQSO
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The Poisson Process

P(t) = e-at (at)</k! so that the number of events during a time
interval of length t is a Poisson rv with parameter u = at.

The expected number of events during any such time interval
is then at, so the expected number during a unit interval of
time is a.

The occurrence of events over time as described is called a
Poisson process; the parameter « specifies the rate for the
process.
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