Joint probability distributions: Discrete Variables

Probability mass function (pmf) of a single discrete random variable X
specifies how much probability mass is placed on each possible X
value.

The joint pmf of two discrete random variables X and Y describes how
much probability mass is placed on each possible pair of values (x, y):

p(x, y) = P(X=xand Y=y)

Two Discrete Random Variables

Like single pmf, joint pmf has to be positive, and add up to 1:
pxy)=0 and > p(xy) =1
Xy

Events: sets consisting of elements (x, y). Examples:
A={(x,y): x +y=5}

B={(x, y): max(x, y) < 3}

C={(x,y): x=5}

D={(x,¥): x<5and y < 5}

Probability P[(X, Y) € A] = sum the joint pmf over pairs (x,y) in A:

AXNeAl= 2 2 pxy)

(x,y) €A
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Example 1 Example 1 ont
An insurance agency has customers with both home and auto policy. All possible values for (X, Y) are then:
For each type of policy, a deductible amount must be specified. (100, 0), (100, 100), (100, 200),
(250, 0), (250, 100), (250, 200)
For auto policy, choices are $100 and $250,
for home policy, choices are $0, $100, and $200. Suppose the joint pmf is given by the insurance company in the
accompanying joint probability table:
Suppose a customer is selected at random. Let: y
p(x, y) | 0 100 200
X = his deductible on the auto policy X 100 20 10 20
Y = his deductible on the home policy. 250 .05 15 .30
So from the table, P(100, 100) = P(X= 100 and Y= 100) = 0.10.
P(Y = 100) = p(100,100)+ p(250,100)+ p(100,200)+ p(250,200) =.75
4
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What is the probability that X = 100?
p(X=100) = p(100, 0) + p(100, 100) + p(100, 200) = .50

What is the probability that X = 250?
p(X=250) = p(250, 0) + p(250, 100) + p(250, 200) = .50

The “marginal” pmf of Xis

5 x = 100, 250
0 otherwise

px(x) = {

(Focuses only on X, and doesn’t care what Y is)
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Similarly, the marginal pmf of Yis obtained from column totals

y
P, y) | o 100 200
X 100 20 .10 20
as: 250 05 15 30

25 y=0,100
py(y) = .50 y =200
0 otherwise

so P(Y = 100) = p(100) + p{200) = .75 as before.
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Let Xand Ybe continuous. Joint probability density Function
f(x, y) is a Function satisfying f(x, y) = 0 and

J_w J_mf(X, y)dxdy = 1.
Then for any set A

PIX. Y) € A1 = [ [fe.y) drdy

A
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In particular, if A is the two-dimensional rectangle
{x,y):a<x<b c<y=<d}then

P(XY) EAl=Pa=X=bc=Y=d) = fb de(x,y)dydx

y

Jxy)
Surface f(x, y)

A = Shaded
rectangle
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A bank operates a drive-up and a walk-up window. Let
X =the proportion of time the drive-up facility is in use
Y = the proportion of time the walk-up window in use

Say the manager has given us the joint pdf based on his experience:
6 2
g(x+y) O0=x=10=y=1

fo,y) =

0 otherwise
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As a good probabilist, you Ffirst verify that this is a pdf:
1) f(x,y) =0 (check)
2)
o o S
J j fx,y)dxdy = J J —(x + y) dxdy
w J—o o Jo 5

[ (o ([ oo
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The probability that neither facility is busy more than
one-quarter of the time is

1 174 (174 6
P( =X=-,0=Y= _>:J J —(x + y?)dxdy
o Jo 5

1
4
_ g J01/4 medx i + g J01/4 Lmyz dedy

6 X2 x=1/4 6 y3 y=1/4
20 20, 20 3|
=— =0l
640 0109
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The marginal probability density functions of X and Y, denoted by f
(x) and fAy), respectively, are given by

for —o < x < ®

o = | faydy

() = J:f(x, y) dx for —o0 <y < o
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Independent Random Variables

In many situations, information about the observed value of one of
the two variables Xand Y gives information about the value of the
other variable.

}?
p(x, y) | 0 100 200
X 100 20 10 20
250 .05 15 30

Here, P(X=250)= 0.5 and P(X=100)= 0.5

But, if we are told that the selected individual had Y= 0, then X= 100
is Four times as likely as X = 250.

Independent Random Variables

Two random variables X and Yare said to be independent if for every
pair (x.y):

p(x, ¥) = px(x) p(y) when Xand Yare discrete
Or
when Xand Yare continuous

fix 9) =X F)

If this is not satisfied for all (x, y), then Xand Yare said to be
dependent.
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Example Conditional Distributions
In the insurance example, Suppose
X=number of major defects in a randomly selected car
p(100, 100) =.10 Y= number of minor defects in that same car.
while fwe l hat the sel d h jor def
p,(100) p,(100) = (5)(.25) =.125 IF we ‘earn thatt e‘ée ected car has ?ne major defect, .
what is the probability that the car will also have at least one minor
) defect?
so Xand Yare not independent.
Thatis, whatis A(Y>=1 | X=1)?
Independence of Xand Yrequires that everyentry in the joint
probability table be the product of the corresponding row and
column marginal probabilities.
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Conditional Distributions

The conditional probability density function of Y given that X = xis
J&, )
Sx(x)

Frix ) = —oo <y <

If Xand Yare discrete, replacing pdf's by pmf's in the above is the
conditional probability mass function of Ywhen X = x.

The definition of f,x(v | X) parallels that of P(B| A), the conditional
probability that Bwill occur, given that A has occurred.

Example 1, cont

Reconsider the insurance example:

y
p(x, y) | 0 100 200
X 100 20 .10 .20
250 .05 15 .30

The conditional pmf of Y given that X= 100 is:

P(Y=0 | X=100) = P(Y=0 & X=100)/P(X=100) = 0.2/0.5 = 40%
P(Y=100 | X=100) = 0.1/0.5 = 20%
P(Y=200 | X=100) = 0.2/0.5 = 40%
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Conditional expectation ont More Than Two Random Variables
So what is the expected value of Y given that X=100? If Xi, X,, ..., X,are all discrete random variables, the joint pmf of the
(“conditional expectation”): variables is the function
PX, Xoy - oo Xo) = PXo = X0, Xo = Xy ooy X = X0)
0 * P(Y=0|X=100) +
100 * P(Y=100|X=100) + If the variables are continuous, the joint pdf of X;, .. ., X, is the
200 * P(Y=200|X=100) function f(xi, X, .. ., X,) such that for any nintervals
[a, b1, ..., [a, b,], we have:
0*.4 + 100*.2 + 200*.4 =20+80 =100
b, b,
Pla,=X,=b,....,a,=X,=D,) = J J Sy, . o x)dx,. . dx,
20
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Then the expected value of a function h(X, Y), denoted by E[h(X, Y)] is
given by

2 hix,y) - plx,y)
Ehx.yn=< 0.

Jm J h(x, )« f(x, v) dx dy ~ whenXandYare continuous

when Xand Y are discrete

You have purchased 5 tickets to a concert for you and 4 friends (one is
Bob). Tickets are for seats 1-5 in one row. If the tickets are randomly
distributed among you, what is the expected number of seats
separating you from Bob?

Let Xand Ydenote the seat numbers for you and Bob, respectively.
Possible (X, Y) pairs are

{(1,2),(1,3),...,(5,4)}, and the joint pmf of (X, V) is

|
P x=1,...,5y=1...,5Xx#y
plx,y) = 120
0 otherwise
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The number of seats between you and Bob is Thus
h(X, V) = | X=Y|-1.
- E[h(X.Y)] = Z( )Eh(x, ) plx,y)
XY
h(x, y) 1 2 8 4 5
1 — 0 1 23 s s |
. 0 — . = =EE(|X_J’|—1)'%
y 3 1 0o — 0 1 x=1y=1
4 2 1 0 — 0 Y
5 3 2 1 0 —
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Covariance

When two random variables Xand Yare not independent, it is
frequently of interest to assess how strongly they are related to one
another.

The covariance between two rv's Xand Yis
Cov(X, ) = E[(X = w (Y- uy)]

D> = m)(y — pwplx,y) X, Y discrete
X v

e o

-_ (x — )y — my)f(x, y) dedy

X, Y continuous

J—
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Covariance

Since X— uxand Y- u, are the deviations of the two variables from
their respective mean values, the covariance is the expected product
of deviations.

Note that Cov(X, X) = E[(X— u)2] = UX).

If both variables tend to deviate in the same direction (both go above
their means or below their means at the same time), then the
covariance will be positive.

If they tend to deviate in the opposite direction from their means at
the same time —ie, the signs of (x— u,) and (y- u,) tend to be opposite
-- the product (and covariance) will be negative

If Xand Yare not strongly related, positive and negative products will
tend to cancel one another, yielding a covariance near 0.
STAT 4000/5000
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Covariance shortcut

The following shortcut Formula for Cov(X, Y) simplifies the
computations.

Proposition
Cov(X, V) = E(XY) — ux uay

According to this formula, no intermediate subtractions are
necessary; only at the end of the computation is w0 uy subtracted
from E(XY).

This is analogous to the “shortcut” for the variance computation we
saw earlier.
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Covariance

The covariance depends on both the set of possible pairs and the
probabilities of those pairs.

Below are examples of 3 types of “co-varying”:

) y Y
-1+ -1+ I
P — T &
o "% |
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sl | e e o eo| o
o i || o |
! X | x T
M Kx o

(a) positive covariance; (b) negative covariance; (c) covariance near zero
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The joint and marginal pmf's for
X =automobile policy deductible amount
Y = homeowner policy deductible amount

are:
y
px, y) | 0 100 200 x | 100 250 h% | 0 100 200
N 100 20 .10 .20 pX(x)l 5 5 py(y)|.25 25 5

250 .05 .15 .30

from which uyx= 2xpy(x) = 175 and uy, = 125.
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Therefore,

Cov(X, Y) = %%(x— 175)(y-125)p(x, )

=(100-175)(0-125)(.20) + ...
+ (250 -175)(200 - 125)(.30)

=1875

This is a large positive covariance — but can we say anything about
how large?

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder STAT 4000/5000 30
Definition
The correlation coefficient of Xand Y, denoted by
Corr(X, Y), pxy or just p, is defined by
Correlation py , = V& D)
| Ox Oy
It represents a “scaled” covariance — correlation ranges between -1
and 1.
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Example

In the insurance example,

E(X2) = 36,250, so

0%=36,250 - (175)2 = 5625, $0 0x=75

E(Y2) = 22,500, so

Oy2= 6875, and Oy = 82.92.

Correlation

Propositions

1. Cov(aX+ b, cY+dy=acCov (X, )
2. Corr(aX+ b, cY+ d) = sgn(ac) Corr(X, Y)

3.Foranytworv's Xand ¥, -1 <Corr(X,Y) <1

4.p=1o0r-1iff Y=aX+ bFfor some numbers aand b with
a#0.

This gives
1875 30]
P = Srionon. -
(75)(82.92)
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Correlation Correlation

If Xand Yare independent, then p = 0, but p= 0 does
not imply independence.

The correlation coefficient pis actually not a completely general
measure of the strength of a relationship.

This says that p is a measure of linear relationship between Xand Y,
and only when the two variables are perfectly related in a linear
manner will p be as positive or negative as it can be.

A pless than 1 in absolute value indicates only that the relationship is
not completely linear, but there may still be a very strong nonlinear
relation.
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Also, p = 0 does not imply that Xand Yare independent, but only that
there is a complete absence of a linear relationship.

When p=0, Xand Yare said to be uncorrelated.

Two variables could be uncorrelated yet highly dependent
because there is a strong nonlinear relationship, so be
careful not to conclude too much from knowing that p = 0.

Let Y = X 50% of the time, and —X the other 50% of the time. Then
Cor(X,Y) =0, but there is a strong relationship.
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Example Example

cont'd
Let Xand Ybe discrete rv's with joint pmf The value of Xis completely determined by the value of Yand vice
versa, so the two variables are completely dependent. However, by
1 symmetry uy = uy=0and
‘ 1 (x,v) = (=4, 1), (4,—1),(2,2). (=2, =2
e = - EXY) = (-4)g + (~Hy + @) + @y =0
0 otherwise 4 4 4 4
5_ The covariance is then Cov(X,Y) = E(XY) — ux uy=0 and thus pxy,=0.
The points that receive positive Although there is perfect dependence, there is also complete
| . . )
probability mass are identified ° I absence of any linear relationship!
on the (x, y) coordinate system : : : : : : |
4 =8 -2 —i i ©» 3
_] — D
° -2 -
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Interpreting Correlation

Avalue of p near 1 does not necessarily imply that increasing the
value of X causes Yto increase. It implies only that large X values are
associated with large Yvalues.

For example, in the population of children, vocabulary size and
number of cavities are quite positively correlated, but it is certainly
not true that cavities cause vocabulary to grow.

Instead, the values of both these variables tend to increase as the
value of age, a third variable, increases.

In summary, association (a high correlation) is not the same as
causation.
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