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Statistical Hypotheses

A statistical hypothesis:

a claim about the value of a parameter, population characteristic 
(could be a combination of parameters), or about the form of an entire 
probability distribution. 

Examples: 
• H:  = .75, where   is the true population average of daily per-

student candy+soda expenses in US high schools
• H: p < .10, where p is the population proportion of defective 

helmets for a given manufacturer 

• If 1 and 2 denote the true average breaking strengths of two 
different types of twine, one hypothesis might be the assertion 
that 1 – 2 = 0, and another is the statement  1 – 2 > 5 
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Null vs Alternative Hypotheses
In any hypothesis-testing problem, there are always two competing 

hypotheses under consideration:

1. The status quo (null) hypothesis 

2. The research (alternative) hypothesis

For example, 

 = .75 versus  ≠ .75

p  .10 versus p < .10

The objective of hypothesis testing is to decide, based on sample 
information, if the alternative hypotheses is actually supported by the 
data. 

We usually do new research to challenge the existing (accepted) beliefs.
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Criminal trials

Analogy to a criminal trial:

1. Assertion that the accused individual is innocent

2. Assertion that the accused individual is guilty 

Usually, in the U.S. judicial system, the “innocence” claim is 
initially accepted as the truth. 

Only in the face of strong evidence to the contrary should 
the jury reject this claim in favor of the alternative 
assertion that the accused is guilty. 
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Burden of Proof

In this sense, the claim of innocence is the favored or 
protected hypothesis, and the burden of proof is placed 
on those who believe in the alternative claim. 

Similarly, in testing statistical hypotheses, the problem will 
be formulated so that one of the claims is initially favored. 

This initially favored claim (Ho) will not be rejected in favor 
of the alternative claim (Ha) unless sample evidence 
contradicts it and provides strong support for the alternative 
assertion.
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Precautionary principle 
Another example is the “precautionary principle” often cited in Environmental 
Justice 

It has to do with the introduction of the new products into the society (chemicals 
especially). Are they deemed not harmful to kids/pets/adults under most 
conditions? 

“Assumed harmful until shown not harmful” = Precautionary principle 

“Assumed non-harmful until enough harm observed” = Regular practice

Many countries (EU) are starting to adopt the Precautionary Principle

Examples: 
• AIDS transmitted through blood transfusions (and how good the test of 

HIV presence should be)
• Nanoparticles – especially TI02 in sunscreens
• Zinc in nasal sprays
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To reject or not to reject?

The null hypothesis, denoted by H0, is the claim that is initially 
assumed to be true (the “status quo belief” claim).

The alternative hypothesis, denoted by Ha, is the assertion that 
is contradictory to H0 in some way. 

The null hypothesis will be rejected in favor of the alternative 
hypothesis only if sample evidence suggests that H0 is not likely.
 
If the sample does not strongly contradict H0, we will continue to 
believe in the plausibility of the null hypothesis.

The two possible conclusions:
1) reject H0 

2) fail to reject H0. 
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No proof… only evidence

We can never prove that a hypothesis is true or not true. 

We can only conclude that it is or is not supported by the data.

A test of hypotheses is a method for using sample data to decide 
whether the null hypothesis should be rejected in favor of the 
alternative. 

Thus we might test H0:  = .75 against the alternative  Ha:  ≠ .75. 

Only if sample data strongly suggests that  is something other 
than .75 should the null hypothesis be rejected. 

In the absence of such evidence, H0 should not be rejected, since it is 
still considered plausible. 
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Why favor the null so much?

Why be so committed to the null hypothesis? 
- sometimes we do not want to accept a particular 

assertion unless (or until) data can show strong support 
- reluctance (cost, time) to change

As an example, suppose a company is considering putting 
a new type of coating on bearings that it produces. 

The true average wear life with the current coating is known 
to be 1000 hours. With  denoting the true average life for 
the new coating, the company would not want to make any 
(costly) changes unless evidence strongly suggested that  
exceeds 1000.
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Hypotheses and Test Procedures

A conservative approach is to think about the current theory 
as H0 and the researcher’s alternative explanation as Ha. 

Rejection of the current theory will then occur only when 
evidence is much more consistent with the new theory. 

In many situations, Ha is referred to as the “researcher’s 
hypothesis,” since it is the claim that the researcher would 
really like to validate.
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Forms of Hypotheses 

The alternative to the null hypothesis H0:  = 0 will look like 
one of the following three assertions:

1. Ha:  ≠ 0

2. Ha:  > 0 (in which case the implicit null hypothesis is   0)

3. Ha:  < 0  (in which case the implicit null hypothesis is    0)
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Test Procedures

A test procedure is a rule, based on sample data, for 
deciding whether to reject H0. 

Example --  the defective helmet problem: 

A test of H0: p = .10 versus Ha: p < .10 

We test this on a random sample of n = 200 helmets

Let X denote the number of defective helmets in the 
sample, a binomial random variable
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Test Procedures

If H0 is indeed true, then:
E(X) = np = 200(.10) = 20

However, we can expect fewer than 20 defective helmets if 
Ha is true. 

The number of defective boards we actually observe -- x – 
is the basis for the test. If x is just a bit below 20, then the 
data don’t contradict H0 much. It is reasonable to reject H0 
only if x is significantly less than 20. 

But what does “significantly” mean? Can we reject H0 
if x  15? How about if x  10? 
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Test Procedures

Testing procedure has two constituents: 

(1) a test statistic, or function of the sample data which will 

be used to make a decision, and
 
(2) a rejection region consisting of those test statistic values 
for which H0 will be rejected in favor of Ha. 

So if we have decided we can reject H0 if x  15 – then the 
rejection region consists of {0, 1, 2,…, 15}. Then H0 will not 
be rejected if x = 16, 17,. . . ,199, or 200.
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Errors in Hypothesis Testing

The basis for choosing a particular rejection region lies in 
consideration of the errors that one might be faced with in 
drawing a conclusion. 

Consider the rejection region {X  15}. Even when H0: p 
= .10 is true, it might happen that an unusual sample 
results in x = 13, so that H0 is erroneously rejected. 

On the other hand, even when Ha: p < .10 is true, an 
unusual sample might yield x = 20, in which case H0 would 
not be rejected—again an incorrect conclusion. 
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Errors in Hypothesis Testing

Thus it is possible that 

• H0 may be rejected when it is true  

• H0 may not be rejected when it is in fact false. 

These possible errors are not consequences of a foolishly 
chosen rejection region. 

Either error might result when when any sensible rejection 
region is used. 
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Errors in Hypothesis Testing

Definition 
• A type I error (alpha) consists of rejecting the null 

hypothesis H0 when it is true. 

A type II error (beta) involves not rejecting H0 when 
H0 is false.

This is very similar in spirit to our diagnostic test examples

• False negative test = type I error

• False positive test = type II error
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Errors in Hypothesis Testing

The choice of a particular rejection region depends on the probabilities 
of type I and type II errors we allow the test to make. 

These error probabilities are traditionally denoted by  (type I) and  
(type II), respectively. 

A good test will try to minimize both types of error. 

When H0 specifies a unique value of the parameter, there is a single 
value of . 

However, there is a different value of  for each value of the parameter 
consistent with Ha.

  
18

___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Example 1

Sample of 200 helmets; X = number of defective helmets

H0: p = .10 versus Ha: p < .10 

Test statistic: X = # defective helmets in the sample 

If the null is true, we expect somewhere around 20 
defective helmets 

 

Rejection region: R15 = {1, 2,…,15}; that is, reject H0   
                            if the observed number of defective 
helmets in the sample is 15 or less.

cont’d
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Example 1

This rejection region is called lower-tailed because it 
consists only of small values of the test statistic.

When H0 is true, X has a binomial probability distribution 
with n = 200 and p = 0.10     Thus:

        = P(type I error) = P(H0 is rejected when it is true)

          = P( X  <= 15) = CDF(B(15, 200, 0.10)

          = pbinom(15, 200, 0.10)

          = 0.14

cont’d
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Example 1

That is, when H0 is actually true, roughly 14% of all 
experiments would result in H0 being incorrectly rejected 
(type I error).

In contrast to , there is not a single . Instead, there is a 
different  for each different alternative value of p. 

Thus there is a value of   for p = 0.05, which would imply 
that X ~ Bin(200, 0.05), another value of   for p = 0.075, 
which would imply that X ~ Bin(200, 0.075), and so on. 

cont’d
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Example 1

For example,

(0.09) = P(type II error when p = 0.09)

   = P(H0 is not rejected when it is false because p = .09)

   = P(X > 15 when X ~ Bin(200, 0.09)) = 

    = 1 – pbinom(15,200,0.09) = 0.72

When p is actually 0.09 rather than 0.10 (a “small” 
departure from H0), roughly 72% of all experiments of this 
type would result in H0 being not rejected incorrectly!

cont’d
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Example 1

On the other hand,

(0.05) = P(type II error when p = 0.05)

   = P(H0 is not rejected when it is false because p = .05)

   = P(X > 15 when X ~ Bin(200, 0.05)) = 

    = 1 – pbinom(15,200,0.05) = 0.044

When p is actually 0.05 rather than .10 (larger departure 
from H0), only 4.4% of all experiments of this type would 
result in H0 being not rejected incorrectly.

cont’d
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Power

 decreases as the value of p moves farther away (in the 
direction of the alternative hypothesis) from the null value 

Intuitively, the greater the departure from H0, the less likely 
it is that such a departure will not be detected.

 

Thus   (1 -  )   is often called the “power of the test”

cont’d
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Composite null hypothesis

The proposed test procedure is still reasonable for testing the 
composite null hypothesis H0: p >=  0.10. 

In this case, there is no longer a single , but instead there is an  for 
each p that is at least 0.10: (.10), (.15), (.20), (.25), and so on. It 
is easily verified, though, that           

 (p) =  P(X <= 15   when X ~ Bin(200, p)) = pbinom(15; 200, p)

< (0.10) = .143  for any  p > 0.10 

That is, the largest value of  occurs for the boundary value 0.10 
between H0 and Ha. 

Thus if  is small for the simple null hypothesis, it will also be small for 
the composite H0.

cont’d
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Errors in Hypothesis Testing
We can also obtain a smaller value of   -- the probability that the Null will 
be incorrectly rejected – by decreasing the probability that it will be rejected 
at all. We do this by decreasing the size of the rejection region. 

However, this will also increase the reluctance to reject the null when it is 
false. Ie, it will result in a larger value of .

No rejection region will simultaneously make both  and all  ’s small.

A region must be chosen to strike a compromise between  and 

Historically, rejection of the null is considered to be more serious. 

Thus, a type I error is usually views as “more serious” than a type II error.
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Type I error in hypothesis testing

Thus, specify the largest value of    that can be tolerated, 
and then find a rejection region that has that . 

The resulting value of  is referred to as the significance 
level of the test. 

Traditional levels of significance are .10, .05, and .01, 
though the level in any particular problem will depend on 
the seriousness of a type I error. 

The more serious the type I error, the smaller the 
significance level should be. 
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Summary: Hypothesis Testing

-- Null hypothesis, H0 -- the claim initially assumed to be true 

-- Alternative hypothesis, Ha  -- the assertion contradictory to H0.

The two possible conclusions:

1) reject H0 

2) fail to reject H0. 

Type I error (  ) = P(rejecting the null hypothesis H0  |  H0 is true). 

Type II error ( β ) = P(not rejecting H0 | a specific Ha is true).
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Example 2

Let  denote the true average nicotine content of brand B 
cigarettes. The objective is to test 

Ho:  = 1.5 versus Ha:  > 1.5 

based on a random sample X1, X2,. . . , X32 of nicotine 
content. 

Suppose the distribution of nicotine content is known to be 
normal with  = .20. 

Then X is normally distributed with mean value x =  and 
standard deviation x = .20/       = .0354.
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Example 2

Rather than use X itself as the test statistic, let’s 
standardize X, assuming that H0 is true.

      Test statistic: Z =

Z expresses the distance between X and its expected 
value (when H0 is true) normalized by the standard 
error of the sample mean. 

For example, z = 3 results from an x that is 3 standard errors larger than the 
true mean as postulated by H0. Rejecting H0 when x “considerably” differs from 
1.5 is equivalent to rejecting H0 when z “considerably” differs from 0. 

cont’d
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Example 2

As Ha:  > 1.5, the form of the rejection region is z  c. 
Let’s now determine c so that  = 0.05 

When H0 is true, Z has a standard normal distribution. Thus 

    = P(type I error) = P(rejecting H0 when H0 is true)

       = P(Z  c when Z ~ N(0, 1))

The value c must capture upper-tail area .05 under the z 
curve. So, directly from Appendix Table A.3, 
                   

                       C = z.05 = 1.645.

cont’d
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Example 2

Notice that z  1.645 is equivalent to 
x – 1.5  (.0354)(1.645), that is, x  1.56. 

Then  involves the probability that X < 1.56 and can be 
calculated for any alternative  greater than 1.5.

P(type II error) = P(not rejecting H0 when Ha is true)

       = P(Z < c when Z standardized with a specific 
alternative value of )

cont’d
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Case I: Testing means of a normal population with known  

Null hypothesis: H0 :  = 0

Test statistic value :                               

Alternative Hypothesis       Rejection Region for Level  Test
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Case I: Testing means of a normal population with known 

Rejection regions for z tests: (a) upper-tailed test; (b) lower-tailed test; (c) two-tailed test
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Case II: Large sample tests for means

When the sample size is large, the z tests for case I are 
easily modified to yield valid test procedures without 
requiring either a normal population distribution or 
known .

Earlier we used the key result to justify large-sample 
confidence intervals: 

A large n (>40) implies that the standardized variable

has approximately a standard normal distribution.
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Case III: Testing means of a 
Normal population with unknown , and small n

The One-Sample t Test  

Null hypothesis: H0:  = 0 

Test statistic value:                     

Alternative Hypothesis         Rejection Region for a Level  
                                                                   Test
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CI and Hypotheses
Rejection regions have a lot in common with the confidence intervals we’ve 
learned about so far.

source: shex.org

cont’d
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Proportions

How does hypothesis testing work for proportions?
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Proportions: Large-Sample Tests

The estimator              is unbiased                , has 
approximately a normal distribution, and its standard 
deviation is

When H0 is true,                and                                so     
does not involve any unknown parameters. It then follows 
that when n is large and H0 is true, the test statistic 

has approximately a standard normal distribution.
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Proportions: Large-Sample Tests

Alternative Hypothesis     Rejection Region

Ha: p > p0                          z  z (upper-tailed)

Ha: p < p0                          z  –z (lower-tailed) 
 

Ha: p ≠ p0                 either z  z/2 

                                                                                   or z  –z/2 (two-tailed)

These test procedures are valid provided that np0  10 and
n(1 – p0)  10.
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Example 

Natural cork in wine bottles is subject to deterioration, and 
as a result wine in such bottles may experience 
contamination. 

The article “Effects of Bottle Closure Type on Consumer 
Perceptions of Wine Quality” (Amer. J. of Enology and 
Viticulture, 2007: 182–191) reported that, in a tasting of 
commercial chardonnays, 16 of 91 bottles were considered 
spoiled to some extent by cork-associated characteristics.

Does this data provide strong evidence for concluding that 
more than 15% of all such bottles are contaminated in this 
way?
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Example

Let’s carry out a test of hypotheses using a significance 
level of .10.

1. p = the true proportion of all commercial chardonnay
    bottles considered spoiled to some extent

2. The null hypothesis is H0: p = .15.

3. The alternative hypothesis is Ha: p > .15, the assertion
     that the population percentage exceeds 15%.

cont’d
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Example

4. Since np0 = 91(.15) = 13.65 > 10 and 
    nq0 = 91(.85) = 77.35 > 10, the large-sample z test can
    be used. The test statistic value is

5. The form of Ha implies that an upper-tailed test is
    appropriate: Reject H0 if z  z.10 = 1.28.

6.    = 16/91 = .1758, from which

cont’d
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Example

7. Since .69 < 1.28,    z is not in the rejection region. 
    At significance level .10, the null hypothesis cannot be
    rejected.

    

    Although the percentage of contaminated bottles in the  
    sample somewhat exceeds 15%, the sample percentage 
    is not large enough to conclude that the population 
    percentage exceeds 15%.

    

    The difference between the sample proportion .1758 and
    the null value .15 can adequately be explained by   
    sampling variability.

cont’d
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P-Values

The P-value is a probability of observing values of the test 
statistic that are as contradictory or even more 
contradictory to H0 as the test statistic obtained in our 
sample.

• This probability is calculated assuming that the null

  hypothesis is true.

• Beware: The P-value is not the probability that H0 

    is true, nor is it an error probability!

• The P-value must be between 0 and 1.
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Example

Urban storm water can be contaminated by many sources, 
including discarded batteries. When ruptured, these 
batteries release metals of environmental significance.

The article “Urban Battery Litter” (J. of Environ. Engr., 
2009: 46–57) presented summary data for characteristics 
of a variety of batteries found in urban areas around 
Cleveland.

A sample of 51 Panasonic AAA batteries gave a sample 
mean zinc mass of 2.06g and a sample standard deviation 
of .141g.
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Example

Does this data provide compelling evidence for concluding 
that the population mean zinc mass exceeds 2.0g?

With  denoting the true average zinc mass for such 
batteries, the relevant hypotheses are H0:  = 2.0 versus 
Ha:  > 2.0.

The sample size is large enough so that a z test can be 
used without making any specific assumption about the 
shape of the population distribution.

cont’d
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Example

The test statistic value is

An x value that is further away from 2 than 2.06 is from 2, 
corresponds to a value of z that exceeds 3.04. 

Thus the P-value is

P-value    = P(Z  3.04)

= 1 – (3.04) = .0012

cont’d
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P-Values

More generally, the smaller the P-value, the more evidence 
there is in the sample data against the null hypothesis and 
for the alternative hypothesis. 

The p-value measures the “extremeness” of the sample.

That is, H0 should be rejected in favor of Ha when the P-
value is sufficiently small (such large sample statistic is 
unlikely if the null is true). 

So what constitutes “sufficiently small”?

What is “extreme” enough?
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Decision rule based on the P-value

Select a significance level  (as before, the desired type I 
error probability).

Then

reject H0 if P-value  

do not reject H0 if P-value > 

Thus if the P-value exceeds the chosen significance level, 
the null hypothesis cannot be rejected at that level.
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 P-Values

p-value/2   | | | |
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P-Values

In the previous Example, we calculated P-value = .0012. 
Then using a significance level of .01, we would reject the 
null hypothesis in favor of the alternative hypothesis 
because .0012  .01.

However, suppose we select a significance level of 
only .001, which requires far more substantial evidence 
from the data before H0 can be rejected. In that case we 
would not reject H0 because .0012  .001.

This is why we cannot change significance level after we 
see the data – NOT ALLOWED though tempting!
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P-Values for z Tests

The calculation of the P-value depends on whether the test 
is upper-, lower-, or two-tailed. 

Each of these is the probability of getting a value at least as 
extreme as what was obtained (assuming H0 true).
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P-Values for z Tests

The three cases are illustrated in Figure 8.9.
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P-Values for z Tests

 

cont’d
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Example

The target thickness for silicon wafers used in a certain 
type of integrated circuit is 245  m. 

A sample of 50 wafers is obtained and the thickness of 
each one is determined, resulting in a sample mean 
thickness of 246.18  m and a sample standard deviation of 
3.60  m. 

Does this data suggest that true average wafer thickness is
something other than the target value?
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Example

1. Parameter of interest:  = true average wafer thickness

1. Null hypothesis: H0:  = 245

1. Alternative hypothesis: Ha:  ≠ 245

1. Formula for test statistic value:

1. Calculation of test statistic value:

cont’d
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Example

6. Determination of P-value: Because the test is two-tailed,

P-value = 2(1 – (2.32)) = .0204

7. Conclusion: Using a significance level of .01, H0 would 
not be rejected since .0204 > .01.

At this significance level, there is insufficient evidence to 
conclude that true average thickness differs from the 
target value.

cont’d
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Statistical Versus Practical Significance

When using

one must be especially careful – with large n, z will get 
large!!! 

So any small departure from H0 will almost surely be 
detected by a test – and the null rejected --  but such a 
departure may have little practical significance.
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P-Values for t Tests
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P-Values for t Tests

Just as the P-value for a z test is the area under the z 
curve, the P-value for a t test will be the area under the t-
curve.

The number of df for the one-sample t test is n – 1.
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P-Values for t Tests cont’d
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How are p-values distributed?

Figure below shows a histogram of the 10,000 P-values from a simulation 
experiment under a null μ = 20 (with n = 4 and  = 2). 

When H0 is true, the probability distribution of the P-value is a uniform 

distribution on the interval from 0 to 1. 

cont’d
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Example

About 4.5% of these P-values are in the first bin from 0 
to .05. 

Thus when using a significance level of .05, the null 
hypothesis is rejected in roughly 4.5% of these 10,000 
tests. 

If we continued to generate samples and carry out the test 
for each sample at significance level .05, in the long run 5% 
of the P-values would be in the first bin. 

(the theory works…)

cont’d
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Example 

A histogram of the P-values when we simulate under an alternative μ = 
21. There is a much greater tendency for the P-value to be small 
(closer to 0) when  = 21 than when  = 20.

cont’d

(b) μ = 21
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Example 

Again H0 is rejected at significance level .05 whenever
the P-value is at most .05 (in the first bin). 

Unfortunately, this is the case for only about 19% of the 
P-values. So only about 19% of the 10,000 tests correctly
reject the null hypothesis; for the other 81%, a type II error 
is committed. 

The difficulty is that the sample size is quite small and 21 is 
not very different from the value asserted by the null 
hypothesis.

cont’d
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Example 

Figure below illustrates what happens to the P-value when 
H0 is false because  = 22.

cont’d

(c) μ = 22
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Example 

The histogram is even more concentrated toward values
close to 0 than was the case when  = 21.

In general, as  moves further to the right of the null value 
20, the distribution of the P-value will become more and 
more concentrated on values close to 0. 

Even here a bit fewer than 50% of the P-values are smaller 
than .05. So it is still slightly more likely than not that the 
null hypothesis is incorrectly not rejected. Only for values of 
 much larger than 20 (e.g., at least 24 or 25) is it highly 
likely that the P-value will be smaller than .05 and thus give 
the correct conclusion. 

cont’d


