Difference Between Two Population Means

We are now moving to more refined questions:
How do two (several) sub-populations compare? In particular, are their means the same?

For example,

1. Is this drug's effectiveness the same in children and adults?
2. Does brand A have the same amount of nicotine as brand B ?

The way we answer these is to collect samples from both (all) subpopulations, and perform a two-sample test (ANOVA).

Statistically speaking, for two samples, we want to test whether $\mu_{1}-\mu_{2}=0$ that is, whether $\mu_{1}=\mu_{2}$.

We need some basic assumptions

1. $X_{1}, X_{2}, \ldots . X_{m}$ is a random sample from a distribution with mean μ_{1} and variance σ_{1}^{2}
2. $Y_{1}, Y_{2}, \ldots . Y_{n}$ is a random sample from a distribution with mean μ_{2} and variance σ_{2}^{2}.
3. The X and Y samples are independent of one another.

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder
STAT 4000/5000
2

Example: Difference Between Two Population Means

40 patients were randomly assigned to either the Professional Oral Care (POC) group ($m=20$) or the control group ($n=20$).
... 1 patient in the POC group and 4 in the control group dropped out because of complications

The data analysis is then based on two random sample POC ($m=19$) and
Control ($n=16$)

Difference Between Two Population Means

The data analysis can be based on two samples with uneven sample sizes.

The natural estimator of $\mu_{1}-\mu_{2}$ is $\bar{X}-\bar{Y}$, the difference between the corresponding sample means.

Inferential procedures are based on standardizing this estimator, so we need expressions for the expected value and standard deviation of $\bar{X}-\bar{Y}$.
$E(\bar{X}-\bar{Y})=E(\bar{X})-E(\bar{Y})=\mu_{1}-\mu_{2}$
$\operatorname{Var}(\bar{X}-\bar{Y})=\operatorname{Var}(\bar{X})+(-1)^{2} \operatorname{Var}(\bar{Y})$
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder
STAT 4000/5000

Difference Between Two Population Means

The expected value of $\bar{X}-\bar{Y}$ is $\mu_{1}-\mu_{2}$, so $\bar{X}-\bar{Y}$ is an unbiased estimator of $\mu_{1}-\mu_{2}$.

The standard deviation of $\bar{X}-\bar{Y}$ is

$$
\sigma_{\bar{X}-\bar{Y}}=\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}
$$

The sample variances must be used to estimate this when population variances are unknown.

Normal Populations with Known Variances

If both of the population distributions are normal, both \bar{X} and \bar{Y} have normal distributions.

Furthermore, independence of the two samples implies that the two sample means are independent of one another.

Thus the difference $\bar{X}-\bar{Y}$ is normally distributed, with expected value $\mu_{1}-\mu_{2}$ and standard deviation $\sigma_{\bar{X}-\bar{Y}}$

$$
\sigma_{\bar{X}-\bar{Y}}=\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}
$$

Test Procedures for Normal Populations with Known Variances

Standardizing $\bar{X}-\bar{Y}$ gives the standard normal variable

$$
Z=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}
$$

In a hypothesis-testing problem, the null hypothesis states that $\mu_{1}-\mu_{2}$ has a specified value.

If we are testing equality of the two means, then $\mu_{1}-\mu_{2}$ will be 0 under the null hypothesis.

Test Procedures for Normal Populations with Known Variances

In general:

Null hypothesis: $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$
Test statistic value: $z=\frac{\bar{x}-\bar{y}-\Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}$

Test Procedures for Normal Populations with Known Variances

Null hypothesis: $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$

Alternative Hypothesis Rejection Region for Level α Test
$H_{\mathrm{a}}: \mu_{1}-\mu_{2}>\Delta_{0} \quad z \geq z_{\alpha}$ (upper-tailed)
$H_{\mathrm{a}}: \mu_{1}-\mu_{2}<\Delta_{0} \quad z \leq-z_{\alpha}$ (lower-tailed)
$H_{\mathrm{a}}: \mu_{1}-\mu_{2} \neq \Delta_{0} \quad$ either $z \geq z_{\alpha / 2}$ or $z \leq-\mathrm{z}_{\alpha / 2}$ (two-tailed)

Because these are z tests, a P-value is computed as it was for the z tests [e.g., P-value $=1-\Phi(z)$ for an upper-tailed test].

Example 1

Analysis of a random sample consisting of $m=20$ specimens of coldrolled steel to determine yield strengths resulted in a sample average strength of $\bar{x}=29.8 \mathrm{ksi}$.

A second random sample of $n=25$ two-sided galvanized steel specimens gave a sample average strength of $\bar{y}=34.7 \mathrm{ksi}$.

Assuming that the two yield-strength distributions are normal with $\sigma_{1}=4.0$ and $\sigma_{2}=5.0$, does the data indicate that the corresponding true average yield strengths μ_{1} and μ_{2} are different?

Let's carry out a test at significance level $\alpha=0.01$

Example 1

1. The parameter of interest is $\mu_{1}-\mu_{2}$, the difference between the true average strengths for the two types of steel.
2. The null hypothesis is $H_{0}: \mu_{1}-\mu_{2}=0$
3. The alternative hypothesis is $H_{a}: \mu_{1}-\mu_{2} \neq 0$ if H_{a} is true, then μ_{1} and μ_{2} are different.
4. With $\Delta_{0}=0$,the test statistic value is

$$
z=\frac{\bar{x}-\bar{y}}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}
$$

Example 1

5. The inequality in H_{a} implies that the test is two-tailed. For

$$
\alpha=.01, \alpha / 2=.005, \text { and } z_{\alpha / 2}=z_{.005}=2.58,
$$

H_{0} will be rejected if $z \geq 2.58$ or if $z \leq-2.58$.
6.

$$
z=\frac{29.8-34.7}{\sqrt{\frac{16.0}{20}+\frac{25.0}{25}}}=\frac{-4.90}{1.34}=-3.66
$$

That is, the observed value of $\bar{x}-\bar{y}$ is more than 3 standard deviations below what would be expected were H_{0} true.

Example 1

7. Since $-3.66<-2.58, z$ does fall in the lower tail of the rejection region. H_{0} is therefore rejected at level .01 in favor of the conclusion that $\mu_{1} \neq \mu_{2}$. The sample data strongly suggests that the true average yield strength for cold-rolled steel differs from that for galvanized steel.

The P-value for this two-tailed test is

Large-Sample Tests

$$
2(1-\Phi(3.66)) \approx 2(1-1)=0
$$

So H_{0} would have been rejected at any reasonable significance level.

Large-Sample Tests

The assumptions of normal population distributions and known values of σ_{1} and σ_{2} are fortunately unnecessary when both sample sizes are sufficiently large. In this case, the Central Limit Theorem guarantees that $\bar{X}-\bar{Y}$ has approximately a normal distribution regardless of the underlying population distributions.

Furthermore, using S_{1}^{2} and S_{2}^{2} in place of σ_{1}^{2} and σ_{2}^{2} gives a variable whose distribution is approximately standard normal:

$$
Z=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{m}+\frac{S_{2}^{2}}{n}}}
$$

Large-Sample Tests

A large-sample test statistic results from replacing $\mu_{1}-\mu_{2}$ by Δ_{0}, the expected value of $\bar{X}-\bar{Y}$ when H_{0} is true.

This statistic Z then has approximately a standard normal distribution when H_{0} is true.

Tests with a desired significance level are obtained by using z critical values exactly as before.

Large-Sample Tests

Use of the test statistic value

$$
z=\frac{\bar{x}-\bar{y}-\Delta_{0}}{\sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}}
$$

along with the previously stated upper-, lower-, and twotailed rejection regions based on z critical values gives large-sample tests whose significance levels are approximately α.

These tests are usually appropriate if both $m>40$ and $n>$ 40.

Example

Data on daily calorie intake both for a sample of teens who said they did not typically eat fast food and another sample of teens who said they did usually eat fast food.

Eat Fast Food	Sample Size	Sample Mean	Sample SD
No	663	2258	1519
Yes	413	2637	1138

Does this data provide strong evidence for concluding that true average calorie intake for teens who typically eat fast food exceeds by more than 200 calories per day the true average intake for those who don't typically eat fast food?

Let's investigate by carrying out a test of hypotheses at a significance level of approximately 05 .

Example

The test statistic value is

$$
z=\frac{\bar{x}-\bar{y}-(-200)}{\sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}}
$$

The inequality in H_{a} implies that the test is lower-tailed; H_{0} should be rejected if $z \leq-z_{0.5}=-1.645$.

The calculated test statistic value is

$$
z=\frac{2258-2637+200}{\sqrt{\frac{(1519)^{2}}{663}+\frac{(1138)^{2}}{413}}}=\frac{-179}{81.34}=-2.20
$$

Example

Since $-2.20 \leq-1.645$, the null hypothesis is rejected. At a significance level of .05 , it does appear that true average daily calorie intake for teens who typically eat fast food exceeds by more than 200 the true average intake for those who don't typically eat such food.

The P-value for the test is
P-value = area under the z curve to the left of

$$
-2.20=\Phi(-2.20)=.0139
$$

$0.0139 \leq .05$, we reject the null hypothesis at significance level 05.

Confidence Intervals for $\mu_{1}-\mu_{2}$

When both population distributions are normal, standardizing $\bar{X}-\bar{Y}$ gives a random variable Z with a standard normal distribution.

Since the area under the z curve between $-z_{\alpha 2}$ and $z_{\alpha 2}$ is $1-\alpha$, it follows that

$$
P\left(-z_{\alpha / 2}<\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}<z_{\alpha / 2}\right)=1-\alpha
$$

Confidence Intervals for $\mu_{1}-\mu_{2}$

If both m and n are large, the CLT implies that this interval is valid even without the assumption of normal populations; in this case, the confidence level is approximately $100(1-\alpha) \%$.

Furthermore, use of the sample variances S_{1}^{2} and S_{2}^{2} in the standardized variable Z yields a valid interval in which S_{1}^{2} and S_{2}^{2} replace σ_{1}^{2} and σ_{2}^{2}.

This implies that a $100(1-\alpha) \% \mathrm{CI}$ for $\mu_{1}-\mu_{2}$ has lower limit $\bar{x}-\bar{y}-z_{\alpha / 2} \cdot \sigma_{\bar{x}-\bar{y}}$ and upper limit $\bar{x}-\bar{y}+z_{\alpha / 2} \cdot \sigma_{\bar{x}-\bar{y}}$,

This interval is a special case of the general formula

$$
\hat{\theta} \pm z_{\alpha / 2} \cdot \sigma_{\hat{\theta}} .
$$

Confidence Intervals for $\mu_{1}-\mu_{2}$

Provided that m and n are both large, a Cl for $\mu_{1}-\mu_{2}$ with a confidence level of approximately $100(1-\alpha) \%$ is

$$
\bar{x}-\bar{y} \pm z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}
$$

where - gives the lower limit and the upper limit of the interval. An upper or a lower confidence bound can also be calculated by retaining the appropriate sign (+ or -) and replacing $z_{\alpha / 2}$ by z_{α}

Our standard rule of thumb for characterizing sample sizes as large is $m>40$ and $n>40$.

Example

An experiment carried out to study various characteristics of anchor bolts resulted in 78 observations on shear strength (kip) of $3 / 8$-in. diameter bolts and 88 observations on the strength of $1 / 2$-in. diameter bolts.

Summary quantities
follow, and a comparative box plot is presented in Figure 9.1.

Example

The sample sizes, sample means, and sample standard deviations agree with values given in the article "Ultimate Load Capacities of Expansion Anchor Bolts" (J. of Energy Engr., 1993: 139-158).

The summaries suggest that the main difference between the two samples is in where they are centered.

Variable	N	Mean	Median	TrMean	StDev	SEMean
diam 3/8	78	4.250	4.230	4.238	1.300	0.147
Variable	Min	Max	Q1	Q3		
diam $3 / 8$	1.634	7.327	3.389	5.075		
Variable	N	Mean	Median	TrMean	StDev	SEMean
diam $1 / 2$	88	7.140	7.113	7.150	1.680	0.179
Variable	Min	Max	Q1	Q3		
diam $1 / 2$	2.450	11.343	5.965	8.447		

Example

Let's now calculate a confidence interval for the difference between true average shear strength for $3 / 8-\mathrm{in}$. bolts (μ_{1}) and true average shear strength for $1 / 2-\mathrm{in}$. bolts $\left(\mu_{2}\right)$ using a confidence level of 95\%:

$$
\begin{aligned}
4.25-7.14 \pm(1.96) \sqrt{\frac{(1.30)^{2}}{78}+\frac{(1.68)^{2}}{88}} & =-2.89 \pm(1.96)(.2318) \\
& =-2.89 \pm .45
\end{aligned}
$$

Not-so-large Sample Tests

The Two-Sample t Test and Confidence Interval

We could, for example, assume that both population distributions are members of the Weibull family or that they are both Poisson distributions. It shouldn't surprise you to learn that normality is typically the most reasonable assumption.

Assumptions

Both population distributions are normal, so that $X_{1}, X_{2}, \ldots, X_{m}$ is a random sample from a normal distribution and so is Y_{1}, \ldots, Y_{n} (with the X 's and Y^{\prime} 's independent of one another).

The Two-Sample t Test and Confidence Interval

Up to now, we worked with large sample sizes and used a z-test and Cl in which the sample variances were used in place of the population variances.

In fact, for large samples, the CLT allows us to use these methods even when the two populations of interest are not normal.

In practice, though, it will often happen that at least one sample size is small and the population variances have unknown values.

Without the CLT at our disposal, we proceed by making specific assumptions about the underlying population distributions.

The Two-Sample t Test and Confidence Interval

When the population distribution are both normal, the standardized variable

$$
T=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{m}+\frac{S_{2}^{2}}{n}}}
$$

has approximately a t distribution with df v estimated from the data by

$$
\nu=\frac{\left(\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}\right)^{2}}{\frac{\left(s_{1}^{2} / m\right)^{2}}{m-1}+\frac{\left(s_{2}^{2} / n\right)^{2}}{n-1}}
$$

The Two-Sample t Test and Confidence Interval

The two-sample \boldsymbol{t} confidence interval for $\mu_{1}-\mu_{2}$ with confidence level $100(1-\alpha) \%$ is then

$$
\bar{x}-\bar{y} \pm t_{\alpha / 2, \nu} \sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}
$$

A one-sided confidence bound can be calculated as described earlier.

The two-sample \boldsymbol{t} test for testing $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ is as follows:

Test statistic value: $t=\frac{\bar{x}-\bar{y}-\Delta_{0}}{\sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}}$

Example

Consider the following data on two different types of plainweave fabric:

Fabric Type	Sample Size	Sample Mean	Sample Standard Deviation
Cotton	10	51.71	.79
Triacetate	10	136.14	3.59

Assuming that the porosity distributions for both types of fabric are normal, let's calculate a confidence interval for the difference between true average porosity for the cotton fabric and that for the acetate fabric, using a 95\% confidence level

The Two-Sample t Test and Confidence Interval

```
Alternative Hypothesis Rejection Region for
                                    Approximate Level \(\alpha\) Test
\(H_{\mathrm{a}}: \mu_{1}-\mu_{2}>\Delta_{0} \quad t \geq t_{\alpha, v}\) (upper-tailed)
\(H_{a}: \mu_{1}-\mu_{2}<\Delta_{0} \quad t \leq-t_{\alpha, v}\) (lower-tailed)
\(H_{\mathrm{a}}: \mu_{1}-\mu_{2} \neq \Delta_{0} \quad\) either \(t \geq t_{\alpha / 2, v}\) or \(t \leq-t_{\alpha / 2, v}\)
(two-tailed)
```

Assuming that the porosity distributions for both types of fabric are normal, let's calculate a confidence interval for the difference between true average porosity for the cotton fabric and that for the acetate fabric, using a 95\% confidence level.

Before the appropriate t critical value can be selected, df must be determined:

$$
\mathrm{df}=\frac{\left(\frac{.6241}{10}+\frac{12.8881}{10}\right)^{2}}{\frac{(.6241 / 10)^{2}}{9}+\frac{(12.8881 / 10)^{2}}{9}}=\frac{1.8258}{.1850}
$$

Example 6

Thus we use $v=9 ; t_{0.055,9}=2.262$. The resulting interval is
$51.71-136.14 \pm(2.262) \sqrt{\frac{.6241}{10}+\frac{12.8881}{10}}=-84.43 \pm 2.63$

With a high degree of confidence, we can say that true average porosity for triacetate fabric specimens exceeds that for cotton specimens by between 81.80 and 87.06

Pooled t Procedures

Alternatives to the two-sample t procedures just described:
what if you know that the two populations are normal, AND also that they have equal variances? $\left(\sigma_{1}^{2}=\sigma_{2}^{2}\right)$

That is, the two population distribution curves are assumed normal with equal spreads, the only possible difference between them being where they are centered.

Pooled t Procedure

Pooled t Procedures

Let σ^{2} denote the common population variance. Then standardizing $\bar{X}-\bar{Y}$ gives

$$
Z=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma^{2}}{m}+\frac{\sigma^{2}}{n}}}=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma^{2}\left(\frac{1}{m}+\frac{1}{n}\right)}}
$$

which has a standard normal distribution. Before this variable can be used as a basis for making inferences about $\mu_{1}-\mu_{2}$, the common variance must be estimated from sample data.

Pooled t Procedures

One estimator of σ^{2} is S_{1}^{2}, the variance of the m observations in the first sample, and another is S_{2}^{2}, the variance of the second sample. Intuitively, a better estimator than either individual sample variance results from combining the two sample variances.

A first thought might be to use $\left(S_{1}^{2}+S_{2}^{2}\right) / 2$.
However, if $m>n$, then the first sample contains more information about σ^{2} than does the second sample, and an analogous comment applies if $m<n$.

Pooled t Procedures

The following weighted average of the two sample variances, called the pooled (i.e., combined) estimator of σ^{2},adjusts for any difference between the two sample sizes:

$$
S_{p}^{2}=\frac{m-1}{m+n-2} \cdot S_{1}^{2}+\frac{n-1}{m+n-2} \cdot S_{2}^{2}
$$

The first sample contributes $m-1$ degrees of freedom to the estimate of σ^{2}, and the second sample contributes $n-1 \mathrm{df}$, for a total of $\boldsymbol{m + n - 2 d f}$.

Pooled t Procedures

It has been suggested that one could carry out a preliminary test of $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ and use a pooled t procedure if this null hypothesis is not rejected. This is the "F test" of equal variances.

Note the F-test is rather sensitive to the assumption of normal population distributions- more so than t procedures. We need normally distributed samples here.

The F Distribution

The F Distribution

The F probability distribution has two parameters, denoted by v_{1} and v_{2}. The parameter v_{1} is called the numerator degrees of freedom, and v_{2} is the denominator degrees of freedom.

A random variable that has an F distribution cannot assume a negative value. Since the density function is complicated and will not be used explicitly, we omit the formula.

There is an important connection between an F variable and chi-squared variables.
,

The F Distribution

If X_{1} and X_{2} are independent chi-squared rv's with v_{1} and v_{2} df , respectively, then the rv

$$
F=\frac{X_{1} / v_{1}}{X_{2} / v_{2}}
$$

(the ratio of the two independent chi-squared variables divided by their respective degrees of freedom), can be shown to have an F distribution.

Mathematically, a chi-squared distribution can be obtained by summing squared standardized Normal variables. So a scaled ratio of two variances is a ratio of two scaled chisquared variables.

The F Distribution

Figure below illustrates a typical F density function.

The F Distribution

Analogous to the notation $t_{\alpha, v}$ and $\chi_{\alpha, v}^{2}$, we use $F_{\alpha, v_{1}, v_{2}}$ for the value on the horizontal axis that captures α of the area under the F density curve with v_{1} and v_{2} df in the upper tail.

The density curve is not symmetric, so both upper- and lower-tail critical values must be found separately.

The F Test for Equality of Variances

The F Test for Equality of Variances

The F Test for Equality of Variances

This theorem results from combining the fact that the variables $(m-1) S_{1}^{2} / \sigma_{1}^{2}$ and $(n-1) S_{2}^{2} / \sigma_{2}^{2}$ each have a chi-squared distribution with $m-1$ and $n-1 \mathrm{df}$, respectively.

Because F involves a ratio rather than a difference, the test statistic is the ratio of sample variances.

The claim that $\sigma_{1}^{2}=\sigma_{2}^{2}$ is then rejected if the ratio differs by too much from 1.

A test procedure for hypotheses concerning the ratio $\sigma_{1}^{2} / \sigma_{2}^{2}$ is based on the following result.

Theorem

Let X_{1}, \ldots, X_{m} be a random sample from a normal distribution with variance σ_{1}^{2}, let Y_{1}, \ldots, Y_{n} be another random sample (independent of the X_{i}^{\prime} 's) from a normal distribution with variance σ_{2}^{2}, and let S_{1}^{2} and S_{2}^{2} denote the two sample variances. Then the rv

$$
F=\frac{S_{1}^{2} / \sigma_{T}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}
$$

has an F distribution with $v_{1}=m-1$ and $v_{2}=n-1$.

The F Test for Equality of Variances

Null hypothesis: $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$
Test statistic value: $f=s_{1}^{2} / s_{2}^{2}$

Alternative Hypothesis Rejection Region for a Level α

$$
\begin{array}{ll}
H_{\mathrm{a}}: \sigma_{1}^{2}>\sigma_{2}^{2} & f \geq F_{\alpha, m-1, n-1} \\
H_{\mathrm{a}}: \sigma_{1}^{2}<\sigma_{2}^{2} & f \leq F_{1-\alpha, m-1, n-1} \\
H_{a}: \sigma_{1}^{2} \neq \sigma_{2}^{2} & \text { either } f \geq F_{\alpha 2, m-1, n-1} \text { or } f \leq F_{1-\alpha 2, m-1, n-1}
\end{array}
$$

Example

On the basis of data reported in the article "Serum Ferritin in an Elderly Population" (J. of Gerontology, 1979:
521-524), the authors concluded that the ferritin distribution in the elderly had a smaller variance than in the younger adults. (Serum ferritin is used in diagnosing iron deficiency.)

For a sample of 28 elderly men, the sample standard deviation of serum ferritin (mg / L) was $\mathrm{s}_{1}=52.6$; for 26 young men, the sample standard deviation was $s_{2}=84.2$.

Does this data support the conclusion as applied to men?

Example

Let σ_{1}^{2} and σ_{2}^{2} denote the variance of the serum ferritin distributions for elderly men and young men, respectively. The hypotheses are $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ and $H_{\mathrm{a}}: \sigma_{1}^{2}<\sigma_{2}^{2}$.

At level $.01, H_{0}$ will be rejected if $f \leq F_{.99,27,25}$. To obtain the critical value, we use $q f(0.01,27,25)$ function in R, which yields 0.394 .

The computed value of F is $\left.(52.6)^{2 /(84.2}\right)^{2}=0.390$.
As $0.390 \leq 0.394, H_{0}$ is rejected at level .01 in favor of H_{a} : the variability appears greater in young than in elderly men.
\square

A Confidence Interval for σ_{1} / σ_{2}

A Confidence Interval for σ_{1} / σ_{2}

The Cl for $\sigma_{1}^{2} / \sigma_{2}^{2}$ is based on the probability statement

$$
P\left(F_{1-\alpha / 2, v_{1}, v_{2}}<F<F_{\alpha / 2, v_{1}, v_{2}}\right)=1-\alpha
$$

by the F variable and manipulating the inequalities to isolate $\sigma_{1}^{2} / \sigma_{2}^{2}$.

An interval for σ_{1} / σ_{2} results from taking the square root of each limit.

Difference Between Population Proportions

Two proportions

Having presented methods for comparing the means of two different populations, we now turn attention to the comparison of two population proportions.

Regard an individual or object as a success S if some characteristic of interest is present ("graduated from college", a refrigerator "with an icemaker", etc.).

Let
$p_{1}=$ the true proportion of S 's in population \# 1
$p_{2}=$ the true proportion of S 's in population \# 2

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder \quad STAT 4000/5000

Inferences Concerning a Difference Between Population Proportions

Alternatively, p_{1} can be regarded as the probability that a randomly selected individual or object from the first population is a success.

Suppose that a sample of size m is selected from the first population and independently a sample of size n is selected from the second one.

Let X denote the number of S 's in the first sample and Y be the number of S 's in the second.

Independence of the two samples implies that X and Y are independent.

Inferences Concerning a Difference Between Population Proportions

Provided that the two sample sizes are much smaller than the corresponding population sizes, X and Y can be regarded as having binomial distributions.

The natural estimator for $p_{1}-p_{2}$, the difference in population proportions, is the corresponding difference in sample proportions $X / m-Y / n$.

Pronosition

Let $\hat{p}_{1}=X / m$ and $\hat{p}_{2}=Y / n$, where $X \sim \operatorname{Bin}\left(m, p_{1}\right)$ and $Y \sim \operatorname{Bin}\left(n, p_{2}\right)$ with X and Y independent variables. Then

$$
E\left(\hat{p}_{1}-\hat{p}_{2}\right)=p_{1}-p_{2}
$$

So $\hat{p}_{1}-\hat{p}_{2}$ is an unbiased estimator of $p_{1}-p_{2}$, and

A Large-Sample Test Procedure

$$
V\left(\hat{p}_{1}-\hat{p}_{2}\right)=\frac{p_{1} q_{1}}{m}+\frac{p_{2} q_{2}}{n} \quad\left(\text { where } q_{i}=1-p_{i}\right)
$$

A Large-Sample Test Procedure

The most general null hypothesis an investigator might consider would be of the form H_{0} : $p_{1}-p_{2}=\Delta_{0}$.

Although for population means the case $\Delta_{0} \neq 0$ presented no difficulties, for population proportions $\Delta_{0}=0$ and $\Delta_{0} \neq 0$ must be considered separately.

Since the vast majority of actual problems of this sort involve $\Delta_{0}=0$ (i.e., the null hypothesis $p_{1}=p_{2}$). we'll concentrate on this case.

When $H_{0}: p_{1}-p_{2}=0$ is true, let p denote the common value of p_{1} and p_{2} (and similarly for q).

A Large-Sample Test Procedure

Then the standardized variable

$$
Z=\frac{\hat{p}_{1}-\hat{p}_{2}-0}{\sqrt{p q\left(\frac{1}{m}+\frac{1}{n}\right)}}
$$

has approximately a standard normal distribution when H_{0} is true.

However, this Z cannot serve as a test statistic because the value of p is unknown- H_{0} asserts only that there is a common value of p, but does not say what that value is.

A Large-Sample Test Procedure

A test statistic results from replacing p and q in by appropriate estimators.

Assuming that $p_{1}=p_{2}=p$, instead of separate samples of size m and n from two different populations (two different binomial distributions), we really have a single sample of size $m+n$ from one population with proportion p.

The total number of individuals in this combined sample having the characteristic of interest is $X+Y$.

The natural estimator of p is then

$$
\hat{p}=\frac{X+Y}{m+n}=\frac{m}{m+n} \cdot \hat{p}_{1}+\frac{n}{m+n} \cdot \hat{p}_{2}
$$

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder

A Large-Sample Test Procedure

The second expression for \hat{p} shows that it is actually a weighted average of estimators \hat{p} and \hat{p}_{2} obtained from the two samples.

Using \hat{p} and $\hat{q}=1-\hat{p}$ in place of p and q gives a test statistic having approximately a standard normal distribution when H_{0} is true.

Null hypothesis: $H_{0}: p_{1}-p_{2}=0$
Test statistic value (large samples): $z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p} \hat{q}\left(\frac{1}{m}+\frac{1}{n}\right)}}$

Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder \quad STAT 4000/5000

A Large-Sample Test Procedure

Alternative Hypothesis

$H_{a}: p_{1}-p_{2}>0$
$H_{a}: p_{1}-p_{2}<0$
$H_{a}: p_{1}-p_{2} \neq 0$
A P-value is calculated in the same way as for previous z tests.

The test can safely be used as long as $m \hat{p}_{1}, m \hat{q}_{1}, n \hat{p}_{2}$, and $n \hat{q}_{2}$ are all at least 10 .

Rejection Region for Approximate Level α Test
$z \geq z_{a}$
$z \leq-z_{a}$
either $z \geq z_{a / 2}$ or $z \leq-z_{a / 2}$

Example 11

The parameter of interest is the difference $p_{1}-p_{2}$, where p_{1} is the true proportion of deaths for those who regularly used aspirin and p_{2} is the true proportion of deaths for those who did not use aspirin.

The use of aspirin is beneficial if $p_{1}<p_{2}$ which corresponds to a negative difference between the two proportions.

The relevant hypotheses are therefore

$$
H_{0}: p_{1}-p_{2}=0 \quad \text { versus } \quad H_{a}: p_{1}-p_{2}<0
$$

Example 11

Parameter estimates are $\hat{p}_{1}=81 / 549=.1475$,
$\hat{p}_{2}=141 / 730=.1932$ and $\hat{p}=(81+141) /(549+730)=.1736$.

A z test is appropriate here because all of $m \hat{p}_{1}, m \hat{q}_{1}, n \hat{p}_{2}$, and $n \hat{q}_{2}$ are at least 10. The resulting test statistic value is

$$
z=\frac{.1475-.1932}{\sqrt{(.1736)(.8264)\left(\frac{1}{549}+\frac{1}{730}\right)}}=\frac{-.0457}{.021397}=-2.14
$$

The corresponding P-value for a lower-tailed z test is $\Phi(-2.14)=.0162$.

Example 11

Because $.0162 \leq .05$, the null hypothesis can be rejected at significance level .05 .

So anyone adopting this significance level would be convinced that the use of aspirin in these circumstances is beneficial.

However, someone looking for more compelling evidence might have selected a significance level . 01 and then would not have been persuaded.

A Large-Sample Confidence Interval

A Large-Sample Confidence Interval

As with means, many two-sample problems involve the objective of comparison through hypothesis testing, but sometimes an interval estimate for $p_{1}-p_{2}$ is appropriate.

Both $\hat{p}_{1}=X / m$ and $\hat{p}_{2}=Y / n$ have approximate normal distributions when m and n are both large.

If we identify θ with $p_{1}-p_{2}$, then $\hat{\theta}=\hat{p}_{1}-\hat{p}_{2}$ satisfies the conditions necessary for obtaining a large-sample Cl .

In particular, the estimated standard deviation of $\hat{\theta}$ is $\sqrt{\left(\hat{p}_{1} \hat{q}_{1} / m\right)+\left(\hat{p}_{2} \hat{q}_{2} / n\right)}$.

Example 13

The authors of the article "Adjuvant Radiotherapy and Chemotherapy in Node- Positive Premenopausal Women with Breast Cancer" (New Engl. J. of Med., 1997: 956-962) reported on the results of an experiment designed to compare treating cancer patients with chemotherapy only to treatment with a combination of chemotherapy and radiation.

Of the 154 individuals who received the chemotherapy-only treatment, 76 survived at least 15 years, whereas 98 of the 164 patients who received the hybrid treatment survived at least that long.

A Large-Sample Confidence Interval

The general $100(1-\alpha) \%$ interval $\hat{\theta} \pm z_{\alpha / 2} \cdot \hat{\sigma}_{\hat{\theta}}$ then takes the following form.

A Cl for $p_{1}-p_{2}$ with confidence level approximately $100(1-\alpha) \%$ is

$$
\hat{p}_{1}-\hat{p}_{2} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{m}+\frac{\hat{p}_{2} \hat{q}_{2}}{n}}
$$

This interval can safely be used as long as $m \hat{p}_{1}, m \hat{q}_{1}, h \hat{p}_{2}$, and $n \hat{q}_{2}$ are all at least 10.

Example 13

With p_{1} denoting the proportion of all such women who, when treated with just chemotherapy, survive at least 15 years and p_{2} denoting the analogous proportion for the hybrid treatment, $\hat{p}_{1}=76 / 154=.494$ and 98/164 $=.598$.

A confidence interval for the difference between proportions based on the traditional formula with a confidence level of approximately $99 \%($ qnorm $(0.995)=2.58)$ is

$$
\begin{array}{r}
.494-.598 \pm(2.58) \sqrt{\frac{(.494)(.506)}{154}+\frac{(.598)(.402)}{164}}=-.104 \pm .143 \\
=(-.247, .039)
\end{array}
$$

Example 13

We are 99% confident that $(-0.247,0.039)$ covers the true difference between the two proportions.

Notice that 0 is one of the plausible values of $p_{1}-p_{2}$, so it's tempting to use this Cl to conclude that neither treatment can be judged superior to the other.

However in the case of two sample proportions, a better test can be used for testing HO of equality, using combined p , as in the slide 71 .

Example 13

Null hypothesis: $H_{0}: p_{1}-p_{2}=0$ versus $H_{a}: p_{1}-p_{2}=/=0$
Test statistic value (large samples): $z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p} \hat{q}\left(\frac{1}{m}+\frac{1}{n}\right)}}$
Here, the combined $p=(76+98) /(154+164)=.55$
So,
$z=-0.104 / \operatorname{sqrt}(0.55 * 0.45 *(1 / 154+1 / 164))=-1.86$
Thus, since the p -value ($2 *$ pnorm $(-1.86)=0.06$) of this test statistic is greater than 1%, we cannot reject this null at the significance level of 1%.

H0: p1=p2
Ha: p1=/=p2

Under HO:
p.hat $=(76+98) /(154+164)$
se.hat $=\operatorname{sqrt}\left(p . h a t^{\star}(1-p . h a t)^{\star}(1 / 154+1 / 164)\right)$

Small-Sample Inferences

p1.hat $=76 / 154$
p2.hat $=98 / 164$
P-value: 2*pnorm((p1.hat-p2.hat - 0)/se.hat)
[1] 0.06 => Do not reject H0

Small-Sample Inferences

R code example

On occasion an inference concerning $p_{1}-p_{2}$ may have to be based on samples for which at least one sample size is small.

Appropriate methods for such situations are not as straightforward as those for large samples, and there is more controversy among statisticians as to recommended procedures.

One frequently used test, called the Fisher-Irwin test, is based on the hypergeometric distribution.

Your friendly neighborhood statistician can be consulted for more information. \qquad STAT 4000/5000

t.test

F test: Compare Two Variances in R

The t.test() function performs several t-tests for normal data, or large sample(s) Default assumes unequal variances

```
# independent 2-group t-test
t.test(y~x) # where y is numeric and x is a binary factor
# independent 2-sample t-test
t.test(y1,y2) # where y1 and y2 are numeric
# paired t-test
t.test(y1,y2,paired=TRUE) # where y1 & y2 are numeric
# one sample t-test
t.test(y,mu=3) # Ho: mu=3
You can use the var. equal \(=\) TRUE option to ask for a pooled variance.
You can use the alternative="less" or alternative="greater" option to specify a one tailed test.
```

The var.test() function performs the equality of variances test for normal data
\# When samples are in a single dataset, with 2 labels var.test(values ~ label, data, alternative = "two.sided")
\# when 2 separate samples
var.test(Xsample, Ysample, alternative = "two.sided")

KS test: Kolmogorov-Smirnov Tests

ks.test() function performs a one- or two-sample Kolmogorov-Smirnov test
The two-sample test is for the null hypothesis that x and y were drawn from the same continuous distribution

The one sample test is for the null hypothesis that x is drawn from the specified continuous distribution. It needs " y " to be a character string naming a continuous (cumulative) distribution function, like pnorm
ks.test(x, y, alternative = c("two.sided", "less", "greater"))
ks.test(x, "pnorm" ...)
\# note: ... is where you specify parameters

Example

\#Pesticide trees:

Pesticide $=\mathrm{c}(55.57109,36.50319,47.80090$, 33.34822 , 36.16251 , 35.28337, 41.50154, 44.18931, 40.81439, 33.88648, 44.90427, 49.97089, $22.85414,27.84301,38.49843$)
\#Ladybug trees:
Ladybug $=c(45.44505,35.52320,46.97865,45.76921,41.66216$ $54.69599,58.77678,49.08538,48.53812,70.17137,51.86253,39.59365$, 42.10194, 47.39945, 39.04648)

First, let's test for normality of each sample:
ks.test(Pesticide, "pnorm", mean(Pesticide), sqrt(var(Pesticide))) ks.test(Ladybug, "pnorm", mean(Ladybug), sqrt(var(Ladybug)))

Then, the var.test() function performs the equality of variances test for normal data var.test(Ladybug, Pesticide)

Finally, we can run the appropriate t.test()
t.test(Ladybug, Pesticide, var.equal = TRUE)

Testing difference of two means with non-independent samples

How do we think about a test statistic when the two sample means are not independent?

The covariance between the two sample means is not 0
How do we estimate it?
Sometimes, in a special situation when data are "matched" or "paired", we can compute differences between the matched (or paired) elements of two samples.

Then, we would end up with a single sample of differences. We would then proceed doing one-sample inference, and test the true mean difference being equal to 0 .

Testing difference of two means with non-independent samples

Ten pregnant women were given an injection of pitocin to induce labor. Their systolic blood pressures immediately before and after the injection were:

Patient	Before	After
1	134	140
2	122	130
3	132	135
4	130	126
5	128	134
6	140	138
7	118	124
8	127	126
9	125	132
10	142	144

a. Perform the appropriate hypothesis test at the $\alpha=.05$ level to determine whether the average systolic blood pressure of pregnant women changes after the administering of pitocin.

Testing difference of two means with non-independent samples

Before	After	Difference
134	140	-6
122	130	-8
132	135	-3
130	126	4
128	134	-6
140	138	2
118	124	-6
127	126	1
125	132	-7
142	144	-2

```
before = c(134,122,132,130,128,140,118,127,125,142)
after = c(140,130,135,126,134,138,124,126,132,144)
diff = before-after
t.test(diff)
One Sample t-test
data: diff
t = -2.333, df = 9, p-value = 0.04453
alternative hypothesis: true mean is not equal to 0
9 5 \text { percent confidence interval:}
    -6.10582345 -0.09417655
sample estimates:
mean of x -3.1
```

