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Difference Between Two Population Means

We are now moving to more refined questions:

How do two (several) sub-populations compare? In particular, are their 
means the same?

For example, 

1. Is this drug’s effectiveness the same in children and adults?

2. Does brand A have the same amount of nicotine as brand B?

The way we answer these is to collect samples from both (all) 
subpopulations, and perform a two-sample test (ANOVA).

Statistically speaking, for two samples, we want to test whether  

1 – 2 = 0 that is,  whether 1 = 2. 
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1. X1, X2,….Xm is a random sample from a distribution with 
   
    mean 1 and variance     .

2. Y1, Y2,…..Yn is a random sample from a distribution with 
  
    mean 2 and variance     .

3. The X and Y samples are independent of one another.

Note – no distribution form assumed (for now)

We need some basic assumptions
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Example: Difference Between Two Population 
Means

40 patients were randomly assigned to either the 
Professional Oral Care (POC) group (m = 20) or 

the control group (n = 20). 

…1 patient in the POC group and 4 in the control group 
dropped out because of complications

The data analysis is then based on two random sample 

POC (m = 19) and 
Control (n = 16) 
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The data analysis can be based on two samples with 
uneven sample sizes.

The natural estimator of 1 – 2 is X – Y , the difference 
between the corresponding sample means. 

Inferential procedures are based on standardizing this 
estimator, so we need expressions for the expected value 
and standard deviation of X – Y. 

E(X – Y) = E(X) – E(Y) = 1 – 2 

Var(X – Y) = Var(X) + (-1)2 Var(Y) 

Difference Between Two Population Means
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Difference Between Two Population Means

The expected value of            is 1 – 2, so            is an 
unbiased estimator of 1 – 2. 

The standard deviation of              is

The sample variances must be used to estimate this     
when  population variances  are unknown.
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Normal Populations with Known Variances

If both of the population distributions are normal, both    
and     have normal distributions. 

Furthermore, independence of the two samples implies that 
the two sample means are independent of one another. 

Thus the difference            is normally distributed, with 
expected value 1 – 2 and standard deviation           
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Test Procedures for Normal Populations with Known 
Variances

Standardizing            gives the standard normal variable

In a hypothesis-testing problem, the null hypothesis 
states that 1 – 2 has a specified value. 

If we are testing equality of the two means, then 
1 – 2 will be 0 under the null hypothesis.
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Test Procedures for Normal Populations with Known 
Variances

In general:

Null hypothesis:  H0 : 1 – 2 = 0 

Test statistic value: z = 
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Test Procedures for Normal Populations with Known 
Variances

Null hypothesis:  H0 : 1 – 2 = 0 

Alternative Hypothesis     Rejection Region for Level  Test

                                         

Ha: 1 – 2 > 0                         z  z (upper-tailed)

                                          

Ha: 1 – 2 < 0                          z   – z (lower-tailed)

Ha: 1 – 2 ≠ 0                          either z  z/2 or z  – z/2(two-tailed)

Because these are z tests, a P-value is computed as it was for the z 
tests [e.g., P-value = 1 – (z) for an upper-tailed test].
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Example 1

Analysis of a random sample consisting of m = 20 specimens of cold-
rolled steel to determine yield strengths resulted in a sample average 
strength of                   

A second random sample of n = 25 two-sided galvanized steel 
specimens gave a sample average strength of         

Assuming that the two yield-strength distributions are normal with 

1 = 4.0 and 2 = 5.0, does the data indicate that the corresponding true 
average yield strengths 1 and 2 are different? 

Let’s carry out a test at significance level  = 0.01
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Example 1

1. The parameter of interest is 1 – 2, the difference  
    between the true average strengths for the two types of  
    steel.

2. The null hypothesis is H0 : 1 – 2 = 0

3. The alternative hypothesis is Ha : 1 – 2 ≠ 0    

     if Ha is true, then 1 and 2 are different.

4. With 0 = 0,the test statistic value is 

cont’d
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Example 1

5. The inequality in Ha implies that the test is two-tailed. For 
   
     = .01, /2 = .005,and z/2 = z.005 = 2.58,

H0  will be rejected if z  2.58 or if z  –2.58.

6. 

    That is, the observed value of              is more than 3     
    standard deviations below what would be expected were 
    H0 true.

cont’d
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Example 1

7. Since –3.66 < –2.58, z does fall in the lower tail of the  
    rejection region. H0 is therefore rejected at level .01 in 
    favor of the conclusion that 1  2. The sample data 
    strongly suggests that the true average yield strength for 
    cold-rolled steel differs from that for galvanized steel.   
    

    The P-value for this two-tailed test is

                      2(1 – (3.66))  2(1 – 1) = 0,

    So H0 would have been rejected at any reasonable 
significance level.

cont’d

14
___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Large-Sample Tests 
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Large-Sample Tests 

The assumptions of normal population distributions and 
known values of 1 and 2 are fortunately unnecessary 
when both sample sizes are sufficiently large. In this case, 
the Central Limit Theorem guarantees that             has 
approximately a normal distribution regardless of the 
underlying population distributions. 

Furthermore, using      and     in place of      and      gives a 
variable whose distribution is approximately standard 
normal:
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Large-Sample Tests 

A large-sample test statistic results from replacing 1 – 2 
by 0, the expected value of     when H0 is true.

This statistic Z then has approximately a standard normal 
distribution when H0 is true.

Tests with a desired significance level are obtained by 
using z critical values exactly as before.
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Large-Sample Tests

Use of the test statistic value

along with the previously stated upper-, lower-, and two-
tailed rejection regions based on z critical values gives 
large-sample tests whose significance levels are 
approximately . 

These tests are usually appropriate if both m > 40 and n > 
40. 
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Example   

Data on daily calorie intake both for a sample of teens who 
said they did not typically eat fast food and another sample 
of teens who said they did usually eat fast food.

Does this data provide strong evidence for concluding that 
true average calorie intake for teens who typically eat fast 
food exceeds by more than 200 calories per day the true 
average intake for those who don’t typically eat fast food?

Let’s investigate by carrying out a test of hypotheses at a 
significance level of approximately .05.

19
___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Example  

The parameter of interest is 1 – 2, where 1 is the true 
average calorie intake for teens who don’t typically eat fast 
food and 2 is true average intake for teens who do 
typically eat fast food. 

The hypotheses of interest are

 H0 : 1 – 2 = –200  versus Ha : 1 – 2  <  –200

The alternative hypothesis asserts that true average daily 
intake for those who typically eat fast food exceeds that for 
those who don’t by more than 200 calories. 

cont’d
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Example 

The test statistic value is

The inequality in Ha implies that the test is lower-tailed; H0 
should be rejected if z  –z0.5 = –1.645.

The calculated test statistic value is

cont’d
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Example 

Since –2.20  –1.645, the null hypothesis is rejected. At a 
significance level of .05, it does appear that true average 
daily calorie intake for teens who typically eat fast food 
exceeds by more than 200 the true average intake for 
those who don’t typically eat such food.

The P-value for the test is 

P-value = area under the z curve to the left of
 

      –2.20 = (– 2.20) = .0139

0.0139  .05, we reject the null hypothesis at significance 
level .05. 

cont’d
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Confidence Intervals for 1 – 2 

When both population distributions are normal, 
standardizing            gives a random variable Z with a 
standard normal distribution. 

Since the area under the z curve between – z/2 and z/2 is 

1 – , it follows that
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Confidence Intervals for 1 – 2

Manipulation of the inequalities inside the parentheses to 
isolate 1 – 2 yields the equivalent probability statement

This implies that a 100(1 – )% CI for 1 – 2 has lower limit 
   and upper limit 

This interval is a special case of the general formula
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Confidence Intervals for 1 – 2

If both m and n are large, the CLT implies that this interval 
is valid even without the assumption of normal populations; 
in this case, the confidence level is approximately
100(1 – )%. 

Furthermore, use of the sample variances     and     in the 
standardized variable Z yields a valid interval in which     
and     replace      and 
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Confidence Intervals for 1 – 2

Provided that m and n are both large, a CI for 1 – 2 with a 
confidence level of approximately 100(1 – )% is

where – gives the lower limit and the upper limit of the 
interval. An upper or a lower confidence bound can also be 
calculated by retaining the appropriate sign (+ or –) and 
replacing z/2 by z

Our standard rule of thumb for characterizing sample sizes 
as large is m > 40 and n > 40.
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Example 

An experiment carried out to study various characteristics 
of anchor bolts resulted in 78 observations on shear 
strength (kip) of 3/8-in. diameter bolts and 88 observations 
on the strength of 1/2-in. diameter bolts. 

Summary quantities 

follow, and 
a comparative box plot 
is presented in Figure 9.1. 

A comparative box plot of the shear strength data
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Example 

The sample sizes, sample means, and sample standard 
deviations agree with values given in the article “Ultimate 
Load Capacities of Expansion Anchor Bolts” (J. of Energy 
Engr., 1993: 139–158). 

The summaries suggest that the main difference between 
the two samples is in where they are centered.
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Example 

Let’s now calculate a confidence interval for the difference 
between true average shear strength for 3/8-in. bolts (1) 
and true average shear strength for 1/2-in. bolts (2) using 
a confidence level of 95%:

cont’d
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Not-so-large Sample Tests 
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The Two-Sample t Test and Confidence 
Interval

Up to now, we worked with large sample sizes and used a z-test and 
CI in which the sample variances were used in place of the population 
variances. 

In fact, for large samples, the CLT allows us to use these methods 
even when the two populations of interest are not normal.

In practice, though, it will often happen that at least one sample size is 
small and the population variances have unknown values. 

Without the CLT at our disposal, we proceed by making specific 
assumptions about the underlying population distributions. 
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The Two-Sample t Test and Confidence 
Interval

We could, for example, assume that both population 
distributions are members of the Weibull family or that they 
are both Poisson distributions. It shouldn’t surprise you to 
learn that normality is typically the most reasonable 
assumption.

Assumptions

Both population distributions are normal, so that 
X1, X2,…, Xm is a random sample from a normal distribution 
and so is Y1,…,Yn (with the X’s and Y’s independent of one 
another).
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The Two-Sample t Test and Confidence 
Interval

When the population distribution are both normal, the 
standardized variable

has approximately a t distribution with df v estimated 

from the data by
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The Two-Sample t Test and Confidence 
Interval

The two-sample t confidence interval for 1 – 2 with 
confidence level 100(1 –  ) % is then

A one-sided confidence bound can be calculated as 
described earlier.

The two-sample t test for testing  H0: 1 – 2 =  0  is as 
follows:

        Test statistic value: t = 
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The Two-Sample t Test and Confidence 
Interval

Alternative Hypothesis   Rejection Region for 
                                          Approximate Level  Test

Ha: 1 – 2 > 0                           t  t,v (upper-tailed)

 

Ha: 1 – 2 < 0                          t  – t,v (lower-tailed) 

Ha: 1 – 2  0                           either t  t/2,v or t  –t/2,v 

                                          (two-tailed)
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Example 

Consider the following data on two different types of 
plainweave fabric:

Assuming that the porosity distributions for both types of 
fabric are normal, let’s calculate a confidence interval for 
the difference between true average porosity for the cotton 
fabric and that for the acetate fabric, using a 95% 
confidence level

cont’d
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Example 6

Assuming that the porosity distributions for both types of 
fabric are normal, let’s calculate a confidence interval for 
the difference between true average porosity for the cotton 
fabric and that for the acetate fabric, using a 95% 
confidence level.

 

Before the appropriate t critical value can be selected, df 
must be determined:

cont’d
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Example 6

Thus we use v = 9;  t.025,9 = 2.262. The resulting interval is

With a high degree of confidence, we can say that true 
average porosity for triacetate fabric specimens exceeds 
that for cotton specimens by between 81.80 and 87.06

cont’d
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Pooled t Procedure
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Pooled t Procedures

Alternatives to the two-sample t procedures just described:

 what if you know that the two populations are normal, 

AND also that they have equal variances?

That is, the two population distribution curves are assumed 
normal with equal spreads, the only possible difference 
between them being where they are centered. 
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Pooled t Procedures

Let  
2 denote the common population variance. Then 

standardizing            gives

which has a standard normal distribution. Before this 
variable can be used as a basis for making inferences          
 about 1 – 2, the common variance must be estimated 
from sample data. 
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Pooled t Procedures

One estimator of  
2 is    , the variance of the m 

observations in the first sample, and another is    , the 
variance of the second sample. Intuitively, a better 
estimator than either individual sample variance results 
from combining the two sample variances.

A first thought might be to use                

However, if  m > n, then the first sample contains more 
information about  

2 than does the second sample, and an 
analogous comment applies if m < n.

42
___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Pooled t Procedures

The following weighted average of the two sample 
variances, called the pooled (i.e., combined) estimator of 
 

2,adjusts for any difference between the two sample 

sizes:

The first sample contributes m – 1 degrees of freedom to 
the estimate of  

2, and the second sample contributes        
n – 1 df, for a total of m + n – 2 df. 
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Pooled t Procedures

It has been suggested that one could carry out a 
preliminary test of                   and use a pooled t procedure 
if this null hypothesis is not rejected. This is the “F test” of 
equal variances.

Note the F-test is rather sensitive to the assumption of 
normal population distributions— more so than t 
procedures. We need normally distributed samples here.
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The F Distribution
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The F Distribution

The F probability distribution has two parameters, denoted 
by v1 and v2. The parameter v1 is called the numerator 
degrees of freedom, and v2 is the denominator degrees of 
freedom.

A random variable that has an F distribution cannot 
assume a negative value. Since the density function is 
complicated and will not be used explicitly, we omit the 
formula.

There is an important connection between an F variable 
and chi-squared variables.
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The F Distribution

If X1 and X2 are independent chi-squared rv’s with v1 and v2 
df, respectively, then the rv

(the ratio of the two independent chi-squared variables 
divided by their respective degrees of freedom), can be 
shown to have an F distribution.

Mathematically, a chi-squared distribution can be obtained 
by summing squared standardized Normal variables. So 
a scaled ratio of two variances is a ratio of two scaled chi-
squared variables.
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The F Distribution

Figure below illustrates a typical F density function.
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The F Distribution

Analogous to the notation t,v  and         we use            for 

the value on the horizontal axis that captures  of the area 

under the F density curve with v1 and v2 df in the upper tail. 

The density curve is not symmetric, so both upper- and 
lower-tail critical values must be found separately. 

.
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The F Test for Equality of Variances
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The F Test for Equality of Variances

A test procedure for hypotheses concerning the ratio         
is based on the following result.

Theorem

Let X1,…, Xm be a random sample from a normal 
distribution with variance       let Y1,…, Yn  be another 
random sample (independent of the Xi’s) from a normal 
distribution with variance      and let      and      denote the 
two sample variances. Then the rv 

has an F distribution with v1 = m – 1 and v2 = n – 1.
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The F Test for Equality of Variances

This theorem results from combining the fact that the 
variables                    and                     each have a 
chi-squared distribution with m – 1 and n – 1 df, 
respectively.

Because F involves a ratio rather than a difference, the test 
statistic is the ratio of sample variances.

The claim that              is then rejected if the ratio differs by 
too much from 1.

52
___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

The F Test for Equality of Variances

Null hypothesis:

Test statistic value: 

Alternative Hypothesis     Rejection Region for a Level   
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Example 

On the basis of data reported in the article “Serum Ferritin in 
an Elderly Population” (J. of Gerontology, 1979: 
521–524), the authors concluded that the ferritin distribution 
in the elderly had a smaller variance than in the younger 
adults. (Serum ferritin is used in diagnosing iron deficiency.)

For a sample of 28 elderly men, the sample standard 
deviation of serum ferritin (mg/L) was s1 = 52.6; for 26 young 
men, the sample standard deviation was s2 = 84.2.

Does this data support the conclusion as applied to men?

54
___________________________________________________________________________________
Copyright Prof. Vanja Dukic, Applied Mathematics, CU-Boulder      STAT 4000/5000

Example

Let      and      denote the variance of the serum ferritin 
distributions for elderly men and young men, respectively. 
The hypotheses are                    and 

At level .01, H0 will be rejected if f  F.99, 27, 25. To obtain the 
critical value, we use qf(0.01, 27, 25) function in R, 
which yields 0.394.

The computed value of F is (52.6)2/(84.2)2 = 0.390. 

As 0.390  0.394, H0 is rejected at level .01 in favor of Ha: 
the variability appears greater in young than in elderly men.

cont’d
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A Confidence Interval for 1/2 
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A Confidence Interval for 1/2 

The CI for           is based on the probability statement 

by the F variable  and manipulating the inequalities to 
isolate           

An interval for 1/2 results from taking the square root of 
each limit.
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Two proportions
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Difference Between Population Proportions

Having presented methods for comparing the means of two 
different populations, we now turn attention to the 
comparison of two population proportions.

Regard an individual or object as a success S if some 
characteristic of interest is present (“graduated from 
college”, a refrigerator “with an icemaker”, etc.). 

Let
p1 = the true proportion of S’s in population  1
p2 = the true proportion of S’s in population  2
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Inferences Concerning a Difference Between Population 
Proportions

Alternatively, p1 can be regarded as the probability that a 
randomly selected individual or object from the first 
population is a success.

Suppose that a sample of size m is selected from the first 
population and independently a sample of size n is selected 
from the second one.

Let X denote the number of S’s in the first sample and Y be 
the number of S’s in the second.

Independence of the two samples implies that X and Y are 
independent.
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Inferences Concerning a Difference Between Population 
Proportions

Provided that the two sample sizes are much smaller than 
the corresponding population sizes, X and Y can be 
regarded as having binomial distributions.

The natural estimator for p1 – p2, the difference in 
population proportions, is the corresponding difference in 
sample proportions 
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Inferences Concerning a Difference Between Population 
Proportions

Proposition
Let                and                where X ~ Bin(m, p1) and 
Y ~ Bin(n, p2 ) with X and Y independent variables. Then

                 

So             is an unbiased estimator of p1 –  p2, and 

                                                 (where qi = 1 –  pi)
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A Large-Sample Test Procedure
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A Large-Sample Test Procedure

The most general null hypothesis an investigator might 
consider would be of the form H0: p1 –  p2 =

Although for population means the case       0 presented
no difficulties, for population proportions     = 0 and      0 
must be considered separately. 

Since the vast majority of actual problems of this sort 
involve     = 0 (i.e., the null hypothesis p1 = p2). we’ll 
concentrate on this case.

When H0: p1 –  p2 = 0 is true, let p denote the common 
value of p1 and p2 (and similarly for q).
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A Large-Sample Test Procedure

Then the standardized variable  

                              
                                                                                   

has approximately a standard normal distribution when H0 
is true.

However, this Z cannot serve as a test statistic because the 
value of p is unknown—H0 asserts only that there is a 
common value of p, but does not say what that value is.
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A Large-Sample Test Procedure

A test statistic results from replacing p and q in  by 
appropriate estimators.

Assuming that p1 = p2 = p, instead of separate samples of 
size m and n from two different populations (two different 
binomial distributions), we really have a single sample of 
size m + n from one population with proportion p. 

The total number of individuals in this combined sample 
having the characteristic of interest is X + Y.

The natural estimator of p is then
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A Large-Sample Test Procedure

The second expression for     shows that it is actually a 
weighted average of estimators    and     obtained from the 
two samples.

Using    and    = 1 –    in place of p and q  gives a test 
statistic having approximately a standard normal 
distribution when H0 is true.

Null hypothesis: H0: p1 – p2 = 0

Test statistic value (large samples): 
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A Large-Sample Test Procedure

 

Ha: p1 – p2 > 0                         z  za

Ha: p1 – p2 < 0                         z  –za

Ha: p1 – p2  0                         either z  za/2 or z  –za/2

A P-value is calculated in the same way as for previous z 
tests. 

The test can safely be used as long as                     and
are all at least 10.

Alternative Hypothesis Rejection Region for 
Approximate Level  Test
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Example 11

The article “Aspirin Use and Survival After Diagnosis of 
Colorectal Cancer” (J. of the Amer. Med. Assoc., 2009: 
649–658) reported that of 549 study participants who 
regularly used aspirin after being diagnosed with colorectal 
cancer, there were 81 colorectal cancer-specific deaths, 
whereas among 730 similarly diagnosed individuals who 
did not subsequently use aspirin, there were 141 colorectal 
cancer-specific deaths.

Does this data suggest that the regular use of aspirin after 
diagnosis will decrease the incidence rate of colorectal 
cancer-specific deaths? Let’s test the appropriate 
hypotheses using a significance level of .05.
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Example 11

The parameter of interest is the difference p1 – p2, where p1 
is the true proportion of deaths for those who regularly 
used aspirin and p2 is the true proportion of deaths for 
those who did not use aspirin.

The use of aspirin is beneficial if p1 < p2 which corresponds 
to a negative difference between the two proportions.

The relevant hypotheses are therefore

    H0: p1 – p2 = 0             versus                Ha: p1 – p2 < 0

cont’d
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Example 11

Parameter estimates are     = 81/549 = .1475,

    = 141/730 = .1932 and    =(81 + 141)/(549 + 730) = .1736.

A z test is appropriate here because all of                     and
     are at least 10. The resulting test statistic value is

The corresponding P-value for a lower-tailed z test is
   (– 2.14) = .0162.

cont’d
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Example 11

Because .0162  .05, the null hypothesis can be rejected 
at significance level .05.

So anyone adopting this significance level would be 
convinced that the use of aspirin in these circumstances is 
beneficial.

However, someone looking for more compelling evidence 
might have selected a significance level .01 and then would 
not have been persuaded.

cont’d
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A Large-Sample Confidence 
Interval
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A Large-Sample Confidence 
Interval
As with means, many two-sample problems involve the 
objective of comparison through hypothesis testing, but 
sometimes an interval estimate for p1 – p2 is appropriate.

Both                and               have approximate normal 
distributions when m and n are both large.

If we identify  with p1 – p2,, then                   satisfies the 
conditions necessary for obtaining a large-sample CI. 

In particular, the estimated standard deviation of    is  
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A Large-Sample Confidence 
Interval
The general 100(1 –  )% interval                   then takes 
the following form. 

A CI for p1 – p2 with confidence level approximately
100(1 –  )% is

This interval can safely be used as long as                     and
     are all at least 10.
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Example 13

The authors of the article “Adjuvant Radiotherapy and 
Chemotherapy in Node- Positive Premenopausal Women 
with Breast Cancer” (New Engl. J. of Med., 1997: 956–962) 
reported on the results of an experiment designed to 
compare treating cancer patients with chemotherapy only 
to treatment with a combination of chemotherapy and 
radiation.

Of the 154 individuals who received the chemotherapy-only 
treatment, 76 survived at least 15 years, whereas 98 of the
164 patients who received the hybrid treatment survived at 
least that long.
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Example 13

With p1 denoting the proportion of all such women who, 
when treated with just chemotherapy, survive at least 15 
years and p2 denoting the analogous proportion for the 
hybrid treatment,     = 76/154 = .494 and 98/164 = .598.

A confidence interval for the difference between proportions 
based on the traditional formula with a confidence level of 
approximately 99% (qnorm(0.995) = 2.58) is

                                                      = (–.247, .039)

cont’d
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Example 13

We are 99% confident that   (–0.247 , 0.039) covers the 
true difference between the two proportions.

Notice that 0 is one of the plausible values of p1 – p2, so it’s 
tempting to use this CI to conclude that neither treatment 
can be judged superior to the other.

However in the case of two sample proportions, a better 
test can be used for testing H0 of equality, using combined 
p, as in the slide 71.

cont’d
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Example 13
cont’d

Null hypothesis: H0: p1 – p2 = 0  versus Ha: p1 – p2  =/=  0

Test statistic value (large samples):

Here, the combined  p =  (76+98)/(154+164) = .55

So,
 z =  -0.104 / sqrt( 0.55*0.45*(1/154 + 1/164)) = -1.86

Thus, since the p-value (2*pnorm(-1.86) = 0.06) of this 
test statistic is greater than 1%, we cannot reject this 
null at the significance level of 1%.
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Example

H0: p1=p2

Ha: p1=/=p2

Under H0:

p.hat = (76+98)/(154+164)

se.hat = sqrt( p.hat*(1-p.hat)*(1/154+1/164) )

p1.hat =  76/154

p2.hat = 98/164

P-value:  2*pnorm((p1.hat-p2.hat – 0 )/se.hat)

[1] 0.06 => Do not reject H0

cont’d
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Small-Sample Inferences
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Small-Sample Inferences

On occasion an inference concerning p1 – p2 may have to 
be based on samples for which at least one sample size is 
small.

Appropriate methods for such situations are not as 
straightforward as those for large samples, and there is 
more controversy among statisticians as to recommended 
procedures.

One frequently used test, called the Fisher–Irwin test, is 
based on the hypergeometric distribution.

Your friendly neighborhood statistician can be consulted for 
more information.
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R code example
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t.test

The t.test( ) function performs several t-tests for normal data, or large sample(s) 
Default assumes unequal variances
 
# independent 2-group t-test
t.test(y~x) # where y is numeric and x is a binary factor

# independent 2-sample t-test
t.test(y1,y2) # where y1 and y2 are numeric

# paired t-test
t.test(y1,y2,paired=TRUE) # where y1 & y2 are numeric

# one sample t-test
t.test(y,mu=3) # Ho: mu=3

You can use the var.equal = TRUE option to ask for a pooled variance. 

You can use the alternative="less" or alternative="greater" option to 
specify a one tailed test.
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F test: Compare Two Variances in R

The var.test( ) function performs the equality of variances test for normal data

# When samples are in a single dataset, with 2 labels 
var.test( values ~ label, data,  alternative = "two.sided")

# when 2 separate samples
var.test(Xsample, Ysample, alternative = "two.sided")
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KS test: Kolmogorov-Smirnov Tests

ks.test() function performs a one- or two-sample Kolmogorov-Smirnov test

The two-sample test is for the null hypothesis that x and y were drawn from the 
same continuous distribution 

The one sample test is for the null hypothesis that x is drawn from the specified 
continuous distribution. It needs “y” to be a character string naming a continuous 
(cumulative) distribution function, like  pnorm

ks.test(x, y, alternative = c("two.sided", "less", "greater"))

ks.test(x, "pnorm" …) 
# note: … is where you specify parameters
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Example

#Pesticide trees:
Pesticide = c(55.57109, 36.50319, 47.80090, 33.34822, 36.16251, 
35.28337, 41.50154, 44.18931, 40.81439, 33.88648, 44.90427, 49.97089, 
22.85414, 27.84301, 38.49843) 

#Ladybug trees:
Ladybug = c(45.44505, 35.52320, 46.97865, 45.76921, 41.66216,
54.69599, 58.77678, 49.08538, 48.53812, 70.17137, 51.86253, 39.59365, 
42.10194, 47.39945, 39.04648) 

First, let’s test for normality of each sample:
ks.test(Pesticide, "pnorm", mean(Pesticide), sqrt(var(Pesticide)))
ks.test(Ladybug, "pnorm", mean(Ladybug), sqrt(var(Ladybug)))

Then, the var.test( ) function performs the equality of variances test for normal data
var.test(Ladybug,Pesticide)

Finally, we can run the appropriate t.test( )
t.test(Ladybug,Pesticide, var.equal = TRUE)
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Testing difference of two means with non-independent samples

How do we think about a test statistic when the two sample 
means are not independent?

The covariance between the two sample means is not 0

How do we estimate it?

Sometimes, in a special situation when data are “matched” or 
“paired”, we can compute differences between the matched (or 
paired) elements of two samples.

Then, we would end up with a single sample of differences. We 
would then proceed doing one-sample inference, and test the 
true mean difference being equal to 0.
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Testing difference of two means with non-independent samples

oing one-sample inference, and test the true mean difference 
being equal to 0.
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Testing difference of two means with non-independent samples

Before After Difference

134 140 -6

122 130 -8

132 135 -3

130 126 4

128 134 -6

140 138 2

118 124 -6

127 126 1

125 132 -7

142 144 -2
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before = c(134,122,132,130,128,140,118,127,125,142)
after  = c(140,130,135,126,134,138,124,126,132,144)

diff = before-after
t.test(diff)

One Sample t-test

data:  diff
t = -2.333, df = 9, p-value = 0.04453
alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:
 -6.10582345 -0.09417655

sample estimates:
mean of x  -3.1 


