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Transport in Transitory, Three-Dimensional, Liouville Flows∗
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Abstract. We derive an action-flux formula to compute the volumes of lobes quantifying transport between
past- and future-invariant regions of n-dimensional, transitory, globally Liouville flows. A transitory
system is one that is nonautonomous only on a compact time interval. This method requires rela-
tively little Lagrangian information about the codimension-one surfaces bounding the lobes, relying
only on the generalized actions of loops on the lobe boundaries. These are easily computed since
the vector fields are autonomous before and after the time-dependent transition. Two examples in
three dimensions are studied: a transitory ABC flow and a model of a microdroplet moving through
a microfluidic channel mixer. In both cases the action-flux computations of transport are compared
to those obtained using Monte Carlo methods.

Key words. Liouville, Hamiltonian, transport, Lagrangian coherent structures, Lagrangian action, ABC flow,
microfluidics
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1. Transitory systems. Finite-time transitions between nearly steady states are common
in a wide range of physical systems. They play a key role in industrial mixing processes, me-
chanical systems in which parameters are modulated in a time-dependent manner, chemical
reactions that progress to equilibrium, and shifts in local ecology due to a sudden environmen-
tal change. Since the transition mechanism may be complex and the starting and ending states
often differ, a prediction of the final state of the system requires a detailed understanding of
the transitional dynamics.

In many cases, an analysis of transport and mixing in these systems can provide such
an understanding. However, since any finite-time transition is aperiodically time-dependent,
traditional techniques for computing dynamical transport [27, 41, 30, 26, 24] are often in-
sufficient. In nonautonomous systems, transport is often thought of as occurring between
“Lagrangian coherent structures”; these are variously defined, for example, using ridges of
finite-time Lyapunov exponent fields [15, 46, 21], distinguished hyperbolic trajectories [18, 19],
or eigenfunctions of the Perron–Frobenius operator [9, 10]. However, few studies have quan-
titatively computed transport between coherent structures in aperiodic flows [14, 6, 32, 34],
and these have been restricted to two dimensions. Several studies of mixing in aperiodic flows
have also been conducted [22, 38, 20]; however, these have focused primarily on global mix-
ing measures rather than transport between coherent structures, and again results have been
restricted to two dimensions. Another study did employ finite-time Lyapunov exponents to
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1786 BROCK A. MOSOVSKY AND JAMES D. MEISS

quantify entrainment of fluid within a three-dimensional (3D) vortex ring during its unsteady
finite-time formation [45]; however, the flow was assumed to be axisymmetric. To the best of
our knowledge, no studies to date have given a quantitative description of finite-time transport
between isolated coherent structures in a fully 3D, aperiodic flow.

In this paper, we present a formalism to compute transported volumes between Lagrangian
coherent structures in a class of 3D aperiodic flows that we call “transitory.” On a phase space
M , a transitory ODE [34] of transition time τ has the form

(1) ẋ = V (x, t), V (x, t) =

{
P (x), t < 0,
F (x), t > τ,

where P :M → TM is the past vector field, F :M → TM is the future vector field, and V :
M×R→ TM is otherwise arbitrary on the transition interval [0, τ ]. The Lagrangian coherent
structures we consider are past- and future-invariant regions of phase space, and transport
between them corresponds to the volumes of certain lobes comprising the intersections of
these regions. Our theory for computing the volumes of these transported lobes applies to
incompressible vector fields that are, in addition, “globally Liouville”; see section 2. The
salient point is that the computation of lobe volumes can be done by knowing only key
“heteroclinic” trajectories that lie on the lobe boundaries. Compared to a näıve, volume-
integral approach, our method reduces by two the dimension of the Lagrangian information
needed at any instant in time to compute a lobe volume. The result is an action-flux formula
for n-dimensional lobe volumes; see section 3. As examples, we will compute transport in a
nonautonomous version of Arnold’s ABC flow [3] in section 4, and in a model flow of a droplet
in a microfluidic mixer in section 5.

Since the nonautonomous portion of the dynamics of (1) is assumed to occur on a compact
interval, it can be effected by a map. Suppose that V in (1) has a complete flow ϕt1,t0 :M →M
that maps a point from its position at t = t0 to its position at t = t1 for any t0, t1 ∈ R. Given
a set At0 ⊆M at time t0, denote its evolution at time t under the flow by

At = ϕt,t0(At0),

and its orbit in the extended phase space by

A = {(At, t) : t ∈ R} ⊆M × R.

The orbit, A, of any At0 ⊆ M is clearly invariant under ϕ, and we refer to At as the time-t
slice of A. The transition map T :M →M for (1) is

(2) T (x) = ϕτ,0(x).

Consequently, a set A0 at t = 0 becomes Aτ = T (A0) at time τ and thereafter evolves under
F . If the dynamics of P and F are known, then the only nontrivial work we must do is to
characterize the map T .

For transitory systems, it is natural to introduce some terminology for orbits according
to their behavior under the stationary vector fields P or F . We will say an orbit A is past-
invariant if At = A0 for all t < 0, and such a set is past-hyperbolic if A0 is a hyperbolic
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invariant set (see, e.g., [40, section 8.1.3]) for the vector field P . Similarly, A is future-invariant
if At = Aτ for all t > τ and is future-hyperbolic if Aτ is a hyperbolic invariant set for F . By
extension, we call a slice At past-/future-invariant/hyperbolic if its orbit in the extended phase
space satisfies the above definitions. Of course, sets that are invariant/hyperbolic under P or
F need not be so under the transitory vector field V . For example, the orbit of a hyperbolic
equilibrium p of P is both past-invariant and past-hyperbolic. However, because of the time-
dependence of V on [0, τ ], T (p) is typically not an equilibrium of F , and even if it is, it need not
be hyperbolic. Thus, the orbit of p under the transitory flow ϕ need not be future-invariant
nor future-hyperbolic. These concepts of “half-time” invariance and hyperbolicity will be used
extensively in the remainder of the paper.

Recall that stable and unstable setsW s,u(γ) ⊂M×R of an orbit γ ⊂M×R are the sets of
points that approach γt as t→ +∞ or −∞, respectively. When γ is past-hyperbolic and has
a nontrivial unstable set, each time-t slice of that set for t < 0 is the unstable manifold of the
orbit of γ0 under the stationary flow of P ; more importantly, the flow of this manifold under
V is precisely the unstable manifold of the full orbit γ. However, the stable manifold of the
orbit of γ0 under the flow of P is not dynamically relevant for the transitory vector field—it
almost certainly is not a stable set for γ. Thus, the unstable manifold of a past-hyperbolic
set is dynamically relevant for the transitory vector field. Similarly it is the stable manifold
of a future-hyperbolic set that is dynamically relevant for V . In the application described
in section 4, the intersections between an unstable manifold of a past-hyperbolic set and a
stable manifold of a future-hyperbolic set will be used to define lobes pivotal to the study of
transport.

2. Liouville vector fields. Recall that Hamiltonian systems are defined on even dimen-
sional manifolds M that are endowed with a closed, nondegenerate two-form ω ∈ Λ2(M), the
“symplectic form.” A locally Hamiltonian [1, Proposition 3.3.6] vector field V :M ×R→ TM
is one that preserves ω, that is, one for which

(3) LV ω = 0,

where LV is the Lie derivative (see (54) in Appendix A). Cartan’s formula (55) and the
assumption that dω = 0 together give

LV ω = d(ıV ω).

In this case, (3) implies that d(ıV ω) = 0; in other words, whenever V is locally Hamiltonian,
ıV ω is closed.

If, in addition, this form is exact,

(4) ıV ω = dH,

then V is globally Hamiltonian, with the Hamiltonian function H :M×R→ R. By Darboux’s
theorem [1, Theorem 3.2.2], there is a neighborhood of each point in M in which there are
coordinates (q, p) so that ω = dq ∧ dp. In these coordinates, (4) takes the form

q̇ = ∂pH, ṗ = −∂qH,
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1788 BROCK A. MOSOVSKY AND JAMES D. MEISS

i.e., a canonical Hamiltonian system.
More generally, suppose an n-dimensional manifold M is endowed with a nondegenerate

form, Ω ∈ Λn(M), i.e., a “volume-form.” A vector field V is incompressible with respect to
Ω, or locally Liouville, if

(5) LV Ω ≡ (∇ · V )Ω = 0.

Liouville’s theorem then implies that the volume of any region is preserved by the flow of V
[31, section 9.2]. As before, (5) implies that iV Ω is closed; if it is also exact, a global analogue
can be defined as follows.

Definition 2.1 (globally Liouville [28, section 2]). A vector field V on a manifold M with
volume-form Ω is globally Liouville if

(6) ıV Ω = dβ

for some β ∈ Λn−2(M).
Of course, if M has trivial cohomology, then every closed form is exact, and there is no

distinction between locally and globally Hamiltonian or Liouville vector fields. More generally,
there may be some global obstruction to the existence of H or β. For example, suppose that
M = T

2 and Ω = ω = dθ1 ∧ dθ2 is the volume/symplectic form. Then the vector field
V = ρi∂θi , for a constant rotation vector ρ, is incompressible because iV Ω = ρ1dθ2 − ρ2dθ1 is
closed. However, since this form is not exact (θ1 and θ2 are not smooth functions on M), V
is not Hamiltonian, or equivalently, not Liouville.

As a second example, supposeM = R
3 and Ω is the standard volume, Ω = dx1∧dx2∧dx3.

Using the natural identification of a two-form ζ = εijkζidxj ∧dxk with the vector �ζ = ζiêi and

a one-form β = βidxi with a vector �β = βiêi, (6) reduces to the statement that �V = ∇× �β.
For instance, if V = ẋi∂xi is a Beltrami vector field on R

3, i.e., �V = ∇× �V , then �β = �V , or

(7) β = ẋidxi.

The ABC vector field (see section 4) is Beltrami and hence has this property.
The symplectic form ω is, by definition, closed. If it is also exact, then there is a one-form

ν (often called the Liouville form) such that ω = −dν. Then if V is globally Hamiltonian,

LV ν = ıV dν + d(ıV ν) = d(ıV ν −H) = dL,

where L is the phase space Lagrangian. In canonical coordinates we could choose ν = p · dq,
in which case L = p · q̇ −H.

Similarly, if a volume-form Ω is exact, we write

(8) Ω = dα.

Then, if V is globally Liouville,

LV α = ıV dα+ d(ıV α) = d(ıV α+ β).

Here ıV α + β ∈ Λn−2(M) is the Liouvillian analogue of the Lagrangian L, so we make the
following definition.
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Definition 2.2 (Lagrangian form). Suppose that the volume-form Ω = dα is exact and the
vector field V is globally Liouville, ıV Ω = dβ, on a manifold M . The Lagrangian form
λ ∈ Λn−2(M) for V is

(9) λ = ıV α+ β,

so that LV α = dλ.
For example, the standard volume Ω is exact on M = R

3 with

(10) α = x3 dx1 ∧ dx2.
When V = ẋi∂xi is Beltrami, (7), (9), and (10) imply

(11) λ = (ẋ1 − x3ẋ2)dx1 + (ẋ2 + x3ẋ1)dx2 + ẋ3dx3.

As we will see in section 3, the form λ plays a central role in the computation of the volumes
of lobes formed by the intersection of past- and future-invariant regions; it is analogous to the
phase space Lagrangian we used to compute such volumes for the 2D case [34].

The discrete analogues of globally Liouville flows are exact volume-preserving maps; we
define them here and note some key properties in anticipation of their use in section 5.

Definition 2.3 (exact volume-preserving map [23]). Suppose that the volume-form Ω = dα is
exact on a manifold M . A diffeomorphism R : M → M is exact volume-preserving if there
exists a generating form η ∈ Λn−2(M) such that

(12) α−R∗α = dη.

For later convenience, we have used the pushforward R∗ (recall (52)) here instead of the
pullback of [23].

It is straightforward to show [23] that if R1 and R2 are exact volume-preserving maps
with generating forms η1 and η2, respectively, then the composition R = R1 ◦R2 is also exact
volume-preserving with generating form

(13) η = η1 +R1∗η2.

The generating form η of (12) is the discrete analogue of the Lagrangian form (9) and interacts
with the latter as follows.

Lemma 2.4. Suppose that Ω = dα is exact, V is globally Liouville with Lagrangian form
λV , and R is exact volume-preserving with generating form η. Then the vector field W = R∗V
is globally Liouville with Lagrangian form

(14) λW = R∗λV + LWη.
Proof. That W is globally Liouville follows directly from (56) and the invariance of Ω

under R∗:
ıWΩ = R∗(ıV Ω) = d(R∗βV ) := dβW ,

where ıV Ω = dβV . Using (12), (54), and Definition 2.2, the Lagrangian form for W is derived
by

LWα = LW (R∗α+ dη) = R∗(LV α) + LW (dη) = d(R∗λV + LW η),
which gives (14).
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Figure 1. (a) Simple lobe Rt ⊂M formed by the intersection of Ut ⊂W u
t (p) and St ⊂W s

t (f). (b) Similar
to (a), except there are three surfaces that make up the lobe boundary: S1

t , S2
t ⊂ W s

t (f) and Ut ⊂ W u
t (p). In

both (a) and (b), intersections of the manifolds are shown as bold black curves, and only the lobe boundaries
∂Rt are shaded.

3. Action-flux formulas for lobe volumes. In this section we will obtain the action-flux
formulas for computing transport fluxes. As a standing assumption, V will denote a transitory
vector field (1) that is globally Liouville with respect to an exact volume-form Ω and that has
a complete flow ϕt,t0 .

Suppose that P0, Fτ ⊆M are past- and future-invariant regions, respectively. By defini-
tion, trajectories within P0 at t = 0 will remain within it for all t < 0: P0 is coherent under P
in the Lagrangian sense. Similarly, Fτ is coherent under the future vector field F . As a result,
any transport between P0 and Fτ must occur during the transition interval [0, τ ], and the
transported phase space itself is the collection of regions Rt = Pt ∩ Ft, i.e., the intersection
of P and F in any slice. We will call the components (path-connected subsets) of the slices
Rt “lobes.” Since V is Liouville, the intersection volume, or flux from P0 to Fτ ,

(15) Φ = Vol(Pt ∩ Ft),

is independent of time. In particular, using the transition map (2), Φ = Vol(T (P0) ∩ Fτ ).
Let Ut = ∂Pt ∩ ∂Rt and St = ∂Ft ∩ ∂Rt be the portions of the lobe boundary correspond-

ing to the boundaries of the past- and future-invariant regions. As we will see below, a key
set in the action-flux formulas will be I = U ∩ S, the set of orbits at the intersection of the
lobe boundary components.

In some cases U and S will be pieces of stable and unstable manifolds of future- and past-
hyperbolic sets. For example, suppose that P0 and Fτ are topological balls whose boundaries
are portions of the closures of the codimension-one unstable and stable manifolds of past-
and future-hyperbolic equilibria, p and f , respectively.1 Under the transitory flow, portions
Ut ⊂W u

t (p) and St ⊂W s
t (f) may bound a lobeRt that is also a ball, as sketched in Figure 1(a).

1For example, p could be the equilibrium p1 of the microdroplet flow of section 5 (see Figure 11(a)), and
thus P0 would be the droplet itself.
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In this case, the intersection set,

(16) It = Ut ∩ St,

is an (n− 2)-dimensional sphere. It is clear that W u
t (p) is past-invariant and W

s
t (f) is future-

invariant (though the lobe boundary surfaces Ut and St themselves are not), and, in this case,
that It → p0 as t→ −∞ and It → fτ as t→∞.

However, It need not be connected, p and f need not be single orbits, and Rt need not
be a topological ball. For example, in Figure 1(b), ft now represents a loop whose orbit
is a future-hyperbolic periodic orbit, while p remains a past-hyperbolic equilibrium. In this
case the lobe boundary contains two disjoint intersection curves, I1t and I2t , both of which
contract to p0 in the past but in forward time approach the periodic orbit fτ . As will become
apparent, to compute the volume of Rt using the action-flux formulas, it is convenient (though
not necessary) that the surface areas of Ut and St converge to zero in the appropriate limit in
time.

Since V is globally Liouville, the flux (15) is independent of time. It is this flux that we
wish to compute, as it represents the portion of the past-invariant region P0 transported to
the future-invariant region Fτ . Stokes’s theorem, using (8), allows for an immediate reduction
of the volume integral over Rt to an integral over its boundary:

(17) Φ = Vol(Rt) =

∫
Rt

Ω =

∫
∂Rt

α.

For the lobe Rt in Figure 1(a), ∂Rt = Ut + St, while in Figure 1(b) there are two disjoint
surfaces S1t , S2t ⊂ W s

t (f) on the boundary, so that ∂Rt = Ut + S1t + S2t . In general, ∂Rt can
be decomposed into pieces U j

t ⊂ ∂Pt and Sit ⊂ ∂Ft of the boundaries of the regions Pt and Ft.
Thus (17) becomes a sum of integrals of α over such submanifolds. It is to this computation
that we now turn.

Evaluation of (17) could be performed by numerical evaluation of the (n− 1)-dimensional
surface integrals; however, this requires an accurate representation of the surfaces Ut,St ⊂
∂Rt, which also implicitly requires knowing their time evolutions. This additional tempo-
ral information is essentially “wasted” since it is not explicitly used to compute the surface
integrals. Furthermore, the exponential stretching typical of chaos can make obtaining well-
resolved representations of Ut and St computationally prohibitive.

Our alternative approach reduces the dimension of the Lagrangian information necessary
for evaluating (17) by computing the “generalized actions” of the orbits on the boundary It,
and it requires evaluating an (n− 2)-dimensional spatial integral plus a temporal integral. In
the extended phase space, this corresponds to an (n−1)-dimensional integral, but it explicitly
uses the time evolutions of ∂Ut and ∂St that must be computed in any case. Our formulation
also applies more generally to the case where ∂Rt has components that are not stable or
unstable manifolds of any future- or past-hyperbolic orbit (e.g., see section 5). Indeed, since
the orbit of any subset of M is invariant under ϕ in M × R, the result applies to general
codimension-one submanifolds Γt ⊂M .

Theorem 3.1. Suppose that Ω = dα is an exact volume-form on M and that Γt is a
codimension-one slice of an invariant set of the flow ϕ of a globally Liouville vector field
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V . Then for any r ∈ R,

(18)

∫
Γt

α =

∫ t

r

(∫
∂Γs

λ

)
ds+

∫
Γr

α.

Proof. Differentiating α along the vector field V , employing Cartan’s homotopy formula
(55) (see Appendix A), and using (6) gives

d

dt
α = LV α = d(ıV α+ β) = dλ.

Integrating this expression from r to t using (56) then results in

α− ϕ∗
r,tα =

∫ t

r

d

ds
ϕ∗
s,tα ds =

∫ t

r
d(ϕ∗

s,tλ) ds

for any r. A second integration over Γt and rearrangement then gives∫
Γt

α =

∫ t

r

(∫
Γt

d(ϕ∗
s,tλ)

)
ds+

∫
Γt

ϕ∗
r,tα

=

∫ t

r

(∫
Γs

dλ

)
ds +

∫
Γr

α,

which immediately reduces to (18) using Stokes’s theorem.
It is interesting to note that the flow implicit in the time-integration in (18) may be

chosen independently of the original transitory flow, provided it is globally Liouville. This
observation will be used to simplify the computations in sections 4–5, and an example of its
implementation is discussed in Appendix B.

Equation (18) simplifies if the surface area of Γt limits to zero in either backward or
forward time. This typically occurs when Γt is a compact subset of an invariant manifold of a
past- or future-hyperbolic orbit (e.g., as in Figure 1). Under these assumptions, one can take
the limit r → ±∞ in Theorem 3.1 to obtain the following.

Corollary 3.2. Under the assumptions of Theorem 3.1, if the α-surface area of Γt vanishes
as t→ −∞,

(19)

∫
Γτ

α =

∫ τ

−∞

(∫
∂Γs

λ

)
ds,

and if the α-surface area of Γt vanishes as t→ +∞,

(20)

∫
Γτ

α = −
∫ ∞

τ

(∫
∂Γs

λ

)
ds.

We will refer to (18)–(20) as the action-flux formulas. Since λ is the n-dimensional ana-
logue of the Lagrangian, its integral along a codimension-two set of orbits gives a generalized
action for that set. Thus, the action-flux formulas, in conjunction with (17), allow us to cal-
culate the flux by computing the generalized action of sets of key orbits on the lobe boundary.
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For example, suppose that a lobe boundary ∂Rτ can be decomposed into ns connected
portions of stable manifold, Siτ , that collapse in forward time, and nu connected portions of
unstable manifold, U j

τ , that collapse in backward time. Then (17), with (19) and (20), yields

Φ =

nu∑
j=1

∫ τ

−∞

(∫
∂Uj

s

λ

)
ds−

ns∑
i=1

∫ ∞

τ

(∫
∂Si

s

λ

)
ds.

Implicit in this equation is a choice of orientation on the boundaries. We will always orient
Rt with respect to a right-handed outward normal; this induces orientations on U j

t and Sit
and, in turn, on their boundaries ∂U j

t and ∂Sit . The general framework for computing the
lobe volume in this simple example is summarized in Algorithm 1. The examples of sections
4 and 5 implement this algorithm and extend it to more general cases.

Algorithm 1. Compute the volume Φ of a single 3D lobe Rτ comprising transport from a
past-invariant region P0 at t = 0 to a future-invariant region Fτ at t = τ , where ∂Rτ can be
decomposed into ns connected portions of stable manifold, Siτ , that collapse in forward time,
and nu connected portions of unstable manifold, U j

τ , that collapse in backward time.

Define a level set function W :M → R such that ∂Fτ = {x ∈M :W(x) = 0}.
Determine a coarse set of seed points x0 ∈ ∂P0 for which W(T (x0)) = 0.
Construct Iτ = ∂Pτ ∩ ∂Fτ by continuation from the seed points.
Φ← 0 {Initialize total flux.}
Decompose Iτ into the boundaries of the nu surfaces U j

τ .
for j = 1 to nu do
Orient ∂U j

τ consistent with the induced orientation of U j
τ .

Φ← Φ+
∫ τ
−∞

(∫
∂Uj

s
λ
)
ds {Compute past actions.}

end for
Decompose Iτ into the boundaries of the ns surfaces Siτ .
for i = 1 to ns do
Orient ∂Siτ consistent with the induced orientation of Siτ .
Φ← Φ− ∫∞

τ

(∫
∂Si

s
λ
)
ds {Compute future actions.}

end for
return Φ

4. Example: Transitory ABC flow. The ABC vector field [3],

(21) ẋ =

⎛
⎝A sin z + C cos y
B sinx+A cos z
C sin y +B cos x

⎞
⎠ ,

models a steady, inviscid, incompressible Beltrami flow on T
3. Interestingly, it is an exact

solution to the Navier–Stokes equations, provided an appropriate forcing term is added to
counter the effects of viscous dissipation; moreover, for small Reynolds numbers, it is stable
[11]. Despite the steadiness of the flow, its streamlines are chaotic [16, 8, 52, 17]; hence (21)
is a prototypical example of a laminar vector field with complicated Lagrangian dynamics.
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The ABC vector field is locally Liouville; however, since there is no exact volume-form on
T
3, it is not globally Liouville on this manifold. In order to apply the action-flux formulas of

section 3, we lift the z coordinate to R, letting the phase space become M = T
2 × R. In this

case, the standard volume Ω = dx ∧ dy ∧ dz is exact on M , and we take α = z dx ∧ dy. With
this choice, (21) is Beltrami, and (7) and (11) give

β = (A sin z + C cos y)dx+ (B sinx+A cos z)dy + (C sin y +B cos x)dz,

λ = (A sin z + C cos y)(dx+ zdy) + (B sinx+A cos z)(dy − zdx)
+ (C sin y +B cos x)dz.

(22)

Several recent studies have used finite-time Lyapunov exponents to analyze both steady
and unsteady generalizations of (21) [13, 42]; these have focused primarily on extracting La-
grangian coherent structures by determining regions that experience maximal local stretching.
Here, we study a transitory ABC flow, in which the identification of coherent structures of P
and F is trivial, and focus on computing the flux between these structures.

4.1. Transitory system. Modulating the coefficients A, B, and C of (21) over a compact
temporal interval results in a vector field that is transitory in the sense of (1). For a transitory
version of (21), we choose to set C = 0 for t < 0 and B = 0 for t > τ . This yields past and
future vector fields

(23) P (x) =

⎛
⎝ A sin z

B sinx+A cos z
B cos x

⎞
⎠ , F (x) =

⎛
⎝ A sin z + C cos y

A cos z
C sin y

⎞
⎠ .

The full transitory vector field is taken to be the convex combination

V (x, t) = (1− s(t))P (x) + s(t)F (x),

where s(t) = 0 for t ≤ 0 and s(t) = 1 for t ≥ τ so that s is a transition function [34]. In this
case, we have

(24) V (x, t) =

⎛
⎝ A sin z + s(t)C cos y

(1− s(t))B sinx+A cos z
s(t)C sin y + (1− s(t))B cos x

⎞
⎠ .

Here, as in [34], we use the cubic transition function

(25) s(t) =
t2

τ2

(
3− 2

t

τ

)
for t ∈ [0, τ ],

so that (24) is C1 in time.
We will denote the flows of P and F by ϕP and ϕF , respectively, and the flow of the full

transitory vector field (24) by ϕ.
The autonomous vector fields P and F are integrable [8]; indeed, they have invariants

HP (x) = B sinx+A cos z,

HF (x) = A sin z + C cos y,
(26)

D
ow

nl
oa

de
d 

04
/2

4/
13

 to
 1

28
.1

38
.2

49
.1

24
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRANSPORT IN TRANSITORY, 3D, LIOUVILLE FLOWS 1795

respectively. Moreover, these functions act as Hamiltonians that generate the flows of P in
the xz-plane and F in the yz-plane. Since ẏ = HP for P and ẋ = HF for F , the motion in
these transverse directions is trivial; consequently, the flows of P and F can be completely
characterized by their two-dimensional portraits; see Figure 2. Note that the level sets of
the invariants (26) become two-tori in M , with the exception of certain critical sets, which
correspond to separatrices.

Figure 2. Poincaré sections of the invariant two-tori of (a) P and (b) F for (A,B,C) = (1, 0.3, 1.5). The
invariant manifolds of the equilibrium p of P are the bold (red) curves in (a), and those of the equilibria fk of
F are the bold (blue) curves in (b). The ranges of (x, y, z) are shifted to visualize the resonance zones P0 and
F1

τ .

In each 2π range of z, P and F generally have two elliptic and two hyperbolic periodic
orbits; in the special case A = B = C = 1, these become lines of fixed points. We will set
A = 1, without loss of generality, and assume that

(27) 0 < B < A = 1 < C;

with this choice, the resulting phase portraits are like those in Figure 2. The past- and future-
invariant regions that we will analyze are bounded by the manifolds of the hyperbolic periodic
orbit

p = {(π2 , y, π)
∣∣ y ∈ [0, 2π]}

of P and the hyperbolic periodic orbits

(28) fk = {(x, π, π2 + 2π(k − 1))
∣∣ x ∈ [0, 2π]}

of F (two of these are shown in Figure 2(b)).
The invariant manifolds—under P—of p correspond to the level set

(29) HP (x) = B −A.
Because of the horizontal periodicity of M , W u

0 (p) forms a pair of homoclinic connections,
shown in cross section in Figure 2(a). Each is homeomorphic to a two-torus in M , as shown
in Figure 3, and together, these manifolds bound a past-invariant region P0. Similarly, the
invariant manifolds—under F—of fk correspond to the level set

(30) HF (x) = A− C.
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Since M is unbounded in z, these form heteroclinic connections; see Figures 2(b) and 3(a).
The heteroclinic connections between fk and fk+1 bound a future-invariant region Fk

τ ; for
each k ∈ Z these are just shifted copies of F 1

τ , shown in Figure 3.

0
5

10 1 2 3 4 5

1.5

2

2.5

3

3.5

4

4.5

z

x
y

8

7

6

5

4

3

2

1
0

2
4

6
8
10 0 1 2 3 4 5 6x

y

z

Figure 3. (a) The past- and future-invariant regions for (24) with (A,B,C) = (1.0, 0.3, 1.5) are bounded
by the invariant manifolds W u(p) (red) and W s(f1,2) (blue), respectively. The lobe shown corresponds to
Rτ = Pτ ∩F1

τ for τ = 0. Its boundary consists of three surfaces Uτ ⊂W u(p), S1
τ ⊂W s(f2), and S2

τ ⊂W s(f1),
which intersect in two loops Ik

τ (green) shown in (b).

It is important to remember that P0 and Fk
τ are not invariant under the transitory flow

ϕ. However, they are Lagrangian coherent structures, or “resonance zones,” of the past and
future vector fields, respectively. We consider the problem of computing the transport from
P0 to each of the Fk

τ , that is, the volume of the lobes Rk
τ = Pτ ∩Fk

τ . There is always at least
one such lobe for any τ and choice of parameters subject to (27), and when τ is finite there
are only finitely many. The accompanying movie 87042 01.mp4 [local/web 6.55MB] shows the
lobes at t = τ for increasing values of τ using the parameters of Figure 3.

4.2. Computation. The volumes of the lobes Rk
τ will be computed using the action-flux

formulas (19) and (20), which rely on knowing the orbits of the intersection curves,

Iτ =W u
τ (p) ∩

⋃
k∈Z

W s
τ (f

k).

As an example, two such curves, I1τ and I2τ , are shown in Figure 3(b). For the moderate
values of τ that we study below, only the intersections of Pτ with F1

τ and F0
τ are nonempty,

and thus the only lobes formed are R1
τ (the primary lobe) and R0

τ (the secondary lobe). To
simplify notation, we adopt the convention of referring to elements of the secondary lobe with
a “tilde” (i.e., R̃τ , Ĩτ , etc.), and omit the superscripts for both lobes (cf. Figure 6).

The computation of the intersection curves is done with a root finding and continuation
method, as described in Algorithm 1, and is simplified by using the level sets (29) and (30).
It is convenient to parameterize the past manifold as G : T2 → W u

0 (p) = ∂P0 and search
for intersections in parameter space. Using (u, v) as the parameters, (29) gives G(u, v) =
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(x(v), u, z(v)), where

(31)

x(v) =

{
2v + π

2 , v ∈ [0, π),

9π
2 − 2v, v ∈ [π, 2π],

z(v) =

{
cos−1

(
2B
A sin2 v − 1

)
, v ∈ [0, π),

2π − cos−1
(
2B
A sin2 v − 1

)
, v ∈ [π, 2π];

see the sketch in Figure 4. Note that increasing v corresponds to a counterclockwise circuit
around the separatrix loop in the xz-plane, while u is simply the y coordinate.

Figure 4. Parameterization of W u
0 (p). Arrows along the manifold are included to indicate orientation.

The parametric representation of the intersection curves is then given in terms of the level
set (30) by

IG =
{
(u, v) ∈ T

2
∣∣ HF (T (G(u, v))) = A− C},

where T is the transition map (2). Two examples are shown in Figure 5; see Appendix B
for a discussion of the continuation techniques used in the computation of these curves. The
corresponding intersections in phase space then become It = ϕt,0(G(IG)), and the curves
shown in Figure 3(b) are the phase space representations of those in Figure 5(a) under this
mapping, with t = τ = 0.

Given numerically computed curves IG, it is straightforward to compute the flux Φ using
the action-flux formulas. We first discuss the case where there is one lobe, the primary lobe
Rτ = Pτ ∩ F1

τ , and its boundary has the form ∂Rτ = Uτ ∪ S1τ ∪ S2τ , as in Figure 3(a). This
occurs when B < 1

2 and τ is small enough. The flux is then given by

(32) Φ = Vol(Rτ ) =

∫
Uτ

α+

∫
S1
τ

α+

∫
S2
τ

α.

Note that under the flow ϕ, S1t → f2 and S2t → f1 as t → +∞, and moreover, since these
surfaces lie on the local manifolds W s

t (f
k), their surface areas limit to zero. Thus, by (20),

(33)

∫
Sj
τ

α = −
∫ ∞

τ

(∫
Ij
s

λ

)
ds,
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Figure 5. Intersection curves IG in parameter space for (A,B,C) = (1, 0.3, 1.5) with τ = 0 (a) and τ = 2.0
(b). The accompanying movie 87042 02.mp4 [local/web 6.91MB] shows the dependence of IG on transition
time for τ ∈ [0.5, 7.5].

where Ijτ = ∂Sjτ , and the orientations of these contours are chosen consistent with a right-
handed outward normal to the lobe. Further note that over the range of integration in (33),
ϕ = ϕF . It is also possible, and may be more efficient, to compute these integrals backward
in time under ϕF (see (58) in Appendix B).

To compute the integral over Uτ in (32) we first use (18) to pull the integration back to
t = 0:

(34)

∫
Uτ

α =

∫ τ

0

(∫
∂Us

λ

)
ds+

∫
U0

α.

The first integral on the right-hand side is easily computed numerically, as it is over the
compact transition interval. Computation of the second is a bit more difficult: since U0
encircles W u

0 (p), it does not collapse to p under ϕP , and consequently, its α-surface area does
not vanish in either direction of time. To get around this, we can divide U0 into subsurfaces
that do collapse under ϕP , reducing the last integral in (34) to a sum of integrals over these
subsurfaces, each of which can be evaluated using (19)–(20) (see (57) and technical remarks
on this splitting in Appendix B). With these techniques, the flux (32) can be computed using
(33) and (34). Several additional techniques can be used to speed up the computations and
decrease numerical errors; see Appendix B.

If B > 1
2 , the past-invariant set Pτ intersects both F1

τ and F0
τ to form a primary lobe

Rτ and a secondary lobe R̃τ , even when τ = 0; see Figure 6. A secondary lobe also exists
when B < 1

2 , provided τ is large enough; for example, for the parameters used in Figure 5,

R̃τ is formed at τ ≈ 4.5. This lobe can be seen in Figure 7 for τ = 6. The total flux Φ is
then simply the sum of the volumes of the two lobes, and computing each is similar to the
single-lobe case described above.
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y

Figure 6. Lobes at t = τ for (A,B,C, τ ) = (1, 0.8, 1.5, 0). The dotted green segment is added to ∂S1,2
τ and

∂S̃1,2
τ to ensure that these are closed curves.
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Figure 7. Intersection of Pτ with Fτ for (21) with (A,B,C) = (1.0, 0.3, 1.5) and τ = 6. Intersection curves
are shown (a) with their corresponding invariant manifolds W u

τ (p) (red) and W s
τ (f

0,1,2) (blue), and (b) without
them.

4.3. Results. Using the techniques discussed above, we computed Φ as a function of the
parameters B and τ . The volumes of the primary and secondary lobes, each of which con-
tributes to Φ, were computed independently. A summary of these lobe volumes as percentages
of the volume of the past-invariant set P0 is shown in Figure 8. The volume of P0 itself is
given by the quadrature2

(35) Vol(P0) = 4π

[
2π2 −

∫ 5π
2

π
2

cos−1

(
B

A
(1− sinx)− 1

)
dx

]
.

2The volume of Fk
τ is given by the same formula upon replacing B

A
with A

C
and x with z.
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Figure 8. Ratio of the volumes of the (a) primary and (b) secondary lobes to Vol(P0). Here (A,C) =
(1.0, 1.5), and B and τ vary. The curves denote emergence of the secondary lobe.
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Figure 9. Dependence of the primary and secondary lobe volumes on transition time τ for (A,B,C) =
(1, 0.5, 1.5). The dotted line denotes the primary lobe volume, and the solid line denotes the total flux Φ.

The curves in Figure 8 denote the parameters at which the second lobe R̃τ emerges. Thus
for B values below this curve, the volume of the secondary lobe in Figure 8(b) is zero. Note
that for the parameter ranges of the figure, the flux due to the secondary lobe is never more
than 3.5% of the volume of P0. Also, the percent flux of the primary lobe does not strongly
depend upon τ ; this variation is shown in Figure 9 for B = 0.5.

We performed two checks on the accuracy of the numerical integrations. For τ = 0, the
intersection curves I0 = Iτ correspond to the points

z = cos−1
(
B
A (1− sinx)− 1

)
,

y = cos−1
(
A
C (1− sin z)− 1

)
,

as x ranges over [π2 ,
5π
2 ]. Since analytical expressions exist for both the intersection curves

and the lobe boundary itself, it is straightforward to numerically compute the lobe volume
directly from the 2D integral in (17). These computations reveal that the relative error in the
action-flux computations was, on average, on the order of 10−5.
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As a second check, and for nonzero τ , we estimated Φ using a Monte Carlo simulation.
We uniformly seeded P0 with N points, advected each point to t = τ , and determined the
number, Nin, of orbits of sample points that lay within the Fk

τ at t = τ . An estimate for Φ is
then

ΦMC = Vol(P0)Nin

N
,

using (35). The relative error in any realization of this Monte Carlo computation is estimated
by [39, section 7.6]

(36)
1√
N

√
N

Nin
− 1.

For N = 106, the difference between the action-flux computations and the Monte Carlo
simulations was typically less than (36). For larger values of τ the difference between the two
methods increases; this is likely due to resolution issues with the intersection curves Iτ , as
neighboring points along these curves begin to separate significantly as τ becomes large.

Note that a Monte Carlo computation of the flux is feasible only due to the simple nature
of P0 and Fk

τ . Since the boundaries of these past- and future-invariant sets are known ana-
lytically, it is straightforward to both uniformly sample P0 and determine which trajectories
lie within Fk

τ at t = τ . This could be computationally prohibitive for more complicated past-
and future-invariant sets. In such cases, using the action-flux formulas to compute Φ typically
requires less Lagrangian information.

5. Example: Microdroplet flow. As a second application of our theory, in this section
we study transport between two halves of a droplet moving through a serpentine microfluidic
channel mixer. Microfluidic devices have numerous applications, for example to detect specific
antigens in the blood [7], perform macromolecular or cellular assays and analyze DNA [4],
and even filter circulating tumor cells from the blood for early-stage cancer diagnosis and
metastasis detection [35, 44]. They have also been key components of process intensification
in industry [37, 29], an effort to decrease processing time, make more efficient use of raw
materials, and gain greater functionality and sensitivity with respect to device size.

Many applications of microfluidics require thorough mixing; however, small length scales
or high fluid viscosities often force a Stokes flow regime in which mixing by molecular diffusion
alone can be impractically slow [36]. Consequently, chaotic advection is required [2, 51], and
designing devices in which this occurs is of much interest [49, 5, 48].

We model a channel mixer for which the mixing occurs within a droplet formed by the
injection of equal volumes of fluids A and B; see Figure 10(a). For simplicity we assume
that the droplet is a sphere and that each fluid occupies one hemisphere at t = 0. The plane
separating A and B at t = 0 is the injection plane, denoted by Πin

0 . Subsequent motion of
the droplet through the serpentine microchannel, as sketched in Figure 10(b), will induce a
time-dependent vector field V (x, t) within the droplet, with the goal of stretching and folding
the initial interface to enhance the mixing by molecular diffusion. Finally, after a transition
time τ , the droplet is extracted by dividing it into two hemispheres along an extraction plane,
Πout

τ .
We assume that Πin

0 is invariant under P (x) = V (x, 0) so that the hemispheres A and B
are each past-invariant. Similarly, we assume that Πout

τ is invariant under F (x) = V (x, τ).
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Figure 10. (a) Streamlines in the xz-plane (comoving frame), initial locations of the fluids A and B, and
the injection plane Πin

0 that separates them. (b) Droplet orientation along the channel.

Figure 11. (a) Streamlines for the droplet vector field V0 in the xz- (blue) and yz- (red) planes. (b)
Corresponding contours of the rotated vector field with angles θ, ψ, and φ as defined by (41).

Extending the dynamics to t ∈ R in this way gives a flow that is transitory in the sense of (1).
Our goal is to compute the fraction of A in each of the extracted hemispheres as a function
of the microchannel shape.

For simplicity we assume that the droplet remains spherical as it moves through the
serpentine channel. We also assume that it is always in contact with the channel walls, so
that—in the lab frame—the velocity at these contact points must be zero. For a straight
channel, the resulting steady flow is axisymmetric with a vortical recirculation, such as that
sketched in Figure 11(a), and this has been confirmed experimentally [43] for a “bullet-shaped”
droplet in a straight channel with rectangular cross section. It is reasonable to think that these
results would extend to a droplet that has sufficient surface tension to maintain a spherical
shape, as well as to a more symmetric circular channel. Finally, we assume that the center-
of-mass velocity of the droplet remains parallel to the channel walls so that, as the channel
bends, the droplet’s velocity field rotates to keep its axis of symmetry parallel to the walls, as
sketched in Figures 10(b) for two dimensions and 11(b) for three dimensions.

5.1. Stationary model. The steady, low-Reynolds-number flow inside a spherical droplet
subject to a uniform external creeping flow U = −Uẑ (the Hadamard–Rybczynski problem)
is known analytically [12]. Following [48], we take this flow to model the steady motion
within a droplet moving through a straight section of microchannel. To nondimensionalize,
we normalize lengths by the droplet radius, D, velocities by U , and time by 4D(1 + μ)/U ,
where μ is the ratio of the viscosity of the fluid within the droplet to that of the exterior fluid.
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The nondimensional vector field within the droplet in a comoving reference frame is given by

V0(x) =

⎛
⎝ 2xz

2yz
2(1 − 2x2 − 2y2 − z2)

⎞
⎠ .

In this frame, the droplet sits at the origin, and its boundary (r2 = |x|2 = 1) is invariant under
V0. Certainly the length scales in typical microfluidic devices imply that the low Reynolds
number assumption used to obtain this solution is appropriate. In addition, if the surface
tension at the droplet boundary is sufficiently large, the assumption that the droplet remains
spherical seems reasonable.

The vector field V0 has two hyperbolic equilibria (stagnation points) p1 = (0, 0, 1) and p2 =
(0, 0,−1), both on the droplet boundary; recall Figure 11(a). The corresponding 2D manifolds
W u(p1) and W s(p2) form a heteroclinic connection between p1 and p2 that comprises the
droplet boundary. Similarly, the 1D manifolds W s(p1) and W u(p2) form a second heteroclinic
connection between these hyperbolic points in the interior along the axis of symmetry. There
is also a ring of elliptic equilibria at z = 0 with x2 + y2 = 1/2.

The vector field V0 can be viewed as a sum of two 2D Hamiltonian vector fields with (x, z)
and (y, z) as canonical variables, and Hamiltonians

H(x) = (1− x2 − y2 − z2)x,
K(x) = (1− x2 − y2 − z2)y,(37)

respectively. Then V0 is equivalent to

(38) V0(x) =

⎛
⎜⎝

−∂H
∂z

−∂K
∂z

∂H
∂x + ∂K

∂y

⎞
⎟⎠ .

With this formulation, it is straightforward to show that (38) is globally Liouville in the sense
of Definition 2.1, with

β0 = H dy −K dx,

λ0 = (zẋ+H) dy − (zẏ +K) dx.
(39)

The vector field V0 contains no swirl: each plane containing the z-axis is invariant. Axisym-
metry implies that the dynamics in each such plane is equivalent to that in the y = 0 plane, for
example, which is Hamiltonian with H(x, 0, z). Consequently the dynamics of V0 is completely
integrable.

5.2. Transitory system. In our model, as the droplet moves in the serpentine channel
(e.g., Figure 12), transitory time-dependence is introduced when the vector field (38) rotates
to maintain its axis of symmetry parallel to the channel walls.

We will assume that the fluid A initially occupies one of the hemispheres bounded by the
injection plane Πin

0 . Without loss of generality, we will choose Πin
0 = {(0, y, z)} and suppose

D
ow

nl
oa

de
d 

04
/2

4/
13

 to
 1

28
.1

38
.2

49
.1

24
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1804 BROCK A. MOSOVSKY AND JAMES D. MEISS

0 1 2 3 4 5 6
0

0.5

0 1 2 3 4 5 6
0

0.5

-1
-0.5

0
0.5

1
1.5

0

1

2

3

4

5

6

-1

-0.5

0

0.5

1

1.5

Figure 12. (a) Wireframe of the microchannel for angles given by (46) with τ = 3.5 and ξ = π/8. The red
centerline is equidistant from the four corners of each cross section and everywhere tangent to the bulk velocity
of the droplet. (b)–(c) Projections of the centerline onto the xz- and yz-planes.

that A occupies the “negative” hemisphere (x < 0), denoted by P0. Note that P0 is past-
invariant under V , since V (x, t) = V0(x) for t < 0 by assumption. Our goal is to compute the
flux Φ of A from P0 to one of the hemispheres bounded by the extraction plane Πout

τ . We will
investigate two possible choices,

(40) Πout
τ = {(0, y, z)} or Πout

τ = {(x, 0, z)}.
Let Fτ denote the “positive” extraction hemisphere; i.e., x > 0 or y > 0, respectively, for the
cases above. Note that the hemisphere Fτ is future-invariant. Since volume is preserved, the
flux we compute is equal to that of the fluid B to the complement of Fτ . The values of the
fluxes of A to the complement of Fτ and B to Fτ follow by volume preservation.

The flux, of course, depends heavily on the choice (40) of extraction plane. For example,
if τ = 0 and Πout

τ = Πin
0 , Fτ will not contain any of fluid A: Φ = 0. However, if the angle

between Πout
τ and Πin

0 is π
2 , as for our second choice, A and B will be equally represented in

each extracted hemisphere when τ = 0, so Φ = π/3, one-quarter of the droplet volume.
To model the shape of the serpentine channel, we will specify the rotations that give its

axis and orientation at each time t. Let θ(t) and ψ(t) be the angles between the channel
axis and its projection onto the lab-fixed xz- and yz-planes; see Figure 11. The angle φ(t)
will represent an additional torsion about the axis of symmetry. These “Tait–Bryan angles”
correspond to the matrices
(41)

Ry(θ) =

⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ , Rx(ψ) =

⎡
⎣1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤
⎦ , Rz(φ) =

⎡
⎣cosφ − sinφ 0
sinφ cosφ 0
0 0 1

⎤
⎦ ,

and give an overall rotation

(42) R(t) = Ry(θ(t))Rx(ψ(t))Rz(φ(t)).
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These are not the typical “right-handed” rotations in R
3, but are designed to give the hori-

zontal, vertical, and torsional angles along the microchannel. In the frame of reference of the
center of mass of the droplet, the time-dependent vector field is then the pushforward, (53),
of V0 by R(t),

(43) V (x, t) = R∗(t)V0(x).

Since the channel is initially aligned with the z-axis, θ(0) = ψ(0) = φ(0) = 0, and since the
process occurs only for t ∈ [0, τ ], we can formally extend the vector field to t ∈ R by setting

θ̇(t) = ψ̇(t) = φ̇(t) = 0 for t /∈ [0, τ ],

so that (43) is transitory. In a fashion similar to section 5.1, denote the hyperbolic equilibria
at the leading end of the droplet by p1 and f1 and those at the trailing end of the droplet by
p2 and f2, under the past and future vector fields, respectively. Since the droplet boundary
at r = 1 remains invariant under (43), the phase space M is simply the closed ball of radius
1, centered at the origin.

Since the droplet is assumed to contact the channel walls, no-slip boundary conditions
and (38) imply that, in the lab frame, the droplet moves with a nondimensional speed of two.
Since its velocity is aligned with the channel axis, the position of the droplet center, c(t),
satisfies the initial value problem

(44) ċ(t) = 2R(t)ẑ , c(0) = 0.

The function c(t) also defines the channel center as a function of the nondimensional time t;
moreover, since the dimensional arclength along the channel is simply s = 4D(1 + μ)t, c(t)
also defines the channel center as a space curve; recall Figure 12.

Note that, from (42), the torsion φ drops out of (44), as it should. Torsion, however,
does affect the channel shape. Indeed, assuming that the channel maintains its shape in the
direction perpendicular to the current channel axis, ċ(t), then a point w(0) on the channel wall
at the injection point evolves to w(t) = c(t) +R(t)w(0). In order that this model correspond
to a physically realizable channel, the walls must correspond to an embedded submanifold—
there can be no self-intersections. For a circular cross section, self-intersections will occur if
the local radius of curvature of any bend in the channel is less than the cross-sectional radius.
For rotations (42), a circular channel with a nondimensional radius of one will be physically
realizable when

(45) θ̇2(t) cos2 ψ(t) + ψ̇2(t) < 4.

For example, it is sufficient that both |θ̇| and |ψ̇| < 2. If the cross section is not circular, it is
more difficult to obtain an analytical requirement.

For the computations below, we will use the shape functions

(46) θ(t) = ψ(t) = ξ sin(2πt/τ ), φ(t) = 0,

for t ∈ [0, τ ] (recall Figure 12) and fix θ(t) = ψ(t) = φ(t) = 0 outside the transition interval.
Since these angles vanish at t = 0 and t = τ , both P and F are equal to V0 in (38). For this
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Figure 13. Lobes contributing to the flux Φ at t = τ for Πout
τ = {x = 0} and ξ = π/4. The intersection

curves I are shown in green and the spherical boundary ∂M is not shown.

model, there is a critical transition time τ∗ for each amplitude ξ, below which the channel
walls would self-intersect. For a circular channel this is easily obtained from (45):

τ∗circ(ξ) =
√
2πξ.

When the channel has a square cross section, as shown in Figure 12, τ∗ is slightly larger
because the self-intersection first occurs at the corners; a numerical solution for two cases
gives

τ∗sq =
{

2.4675, ξ = π
8 ,

4.9348, ξ = π
4 .

In terms of dimensional variables, the physical channel length is L = Uτ , and so, for a given
viscosity ratio, these requirements imply a lower bound on on the “inverse aspect ratio” of
the channel,

L

D
> 4(1 + μ)τ∗.

Even when τ < τ∗, the model (43) still corresponds to a droplet that is forced to rotate;
however, to realize these rotations in a lab, some other mechanism, such as electromagnetic
manipulation of a charged microdroplet [25, 47], would have to be used.

We will use the model (46) to investigate the effects of the transition time τ and amplitude
ξ on the transported flux. As we noted above, given a fixed diameter and viscosity ratio, the
transition time τ is a proxy for the channel length. The oscillation amplitude ξ controls the
magnitude of the bends in the channel.

5.3. Computation. To compute Φ, we employ the action-flux results of section 3. For any
τ > 0, there exist well-defined lobes containing all the fluid A in Fτ ; these lobes are bounded
at any time by slices of the orbits of the injection and extraction planes, Πin

t and Πout
t , and

by the invariant droplet boundary ∂M (see Figure 13). Since Πin
0 and Πout

τ are not hyperbolic
manifolds, the intersections of their orbits in any time-t slice are not heteroclinic, as was the
case in section 4; however these intersection curves are still needed for the computation of the
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Figure 14. Intersection curves Iint
G from (47) with ξ = π/4 for Πout

τ = {x = 0} (top row) and
Πout

τ = {y = 0} (bottom row). Regions that map to the positive side of the extraction plane (points for
which sgn(W(T (G(u, v)))) > 0) are shaded; these correspond to the lobe boundary components Uj

τ ⊂M in (49)
along whose boundary curves we must integrate to compute Φ. Representative orientations are shown in the left
column. The accompanying movies 87042 03.mp4 [local/web 5.90MB] and 87042 04.mp4 [local/web 5.79MB],
corresponding to the top and bottom rows, respectively, show the continuous dependence of Iint

G on τ .

lobe volumes according to the action-flux formulas. They are interior to the droplet (except
at possibly two points on ∂M), and we denote them at time τ by

I intτ = T (Πin
0 ) ∩Πout

τ ,

where T is again the transition map (2). The intersections of T (Πin
0 ) and Πout

τ with ∂M itself
are also important. They lie on the invariant spherical boundary and are denoted by

I∂τ = T (∂Πin
0 ) ∪ ∂Πout

τ .

We use a method similar to that in section 4 to identify the intersection curves. The
injection plane Πin

0 has a natural parameterization G : D1(0)→M , given by

G(u, v) = (0, u, v).

Letting W : M → R so that the extraction plane Πout
τ is its zero level set, the interior

intersection curves in parameter space,

(47) I intG = {(u, v) ∈ D1(0)
∣∣ W(T (G(u, v))) = 0},

are computed using a 2D root finder. Figure 14 shows these curves for ξ = π/4, various values
of τ , and both choices for the extraction plane (40). The corresponding curves in phase space
at t = τ are

I intτ = T (G(I intG )).

To compute the transition map, we use a combination of Cartesian and spherical polar
representations of (43) and integrate the vector field using MATLAB’s implementation of the
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Runge–Kutta (5,4) Dormand–Prince pair. The point is that integration in Cartesian coordi-
nates does not respect the invariance of the sphere ∂M , while standard spherical coordinates
induce singularities at the origin and along the positive z-axis. To avoid the latter, we intro-
duce a second spherical representation in which the inclination is measured from the positive
y-axis. We monitor both inclination and radius, switching between spherical representations
when the inclination drops below some prescribed minimum, and switching to the Cartesian
representation near the origin.

We turn now to the application of the action-flux formulas for computing Φ. It is not hard
to show that the rotations in (41) are each exact volume-preserving, with generators, by (12),

ηy =
1

2
cos θ sin θ(z2 − x2) dy − y sin2 θ(z dx+ x dz),

ηx =
1

2
cosψ sinψ(y2 − z2) dx+ x sin2 ψ(z dy + y dz),

ηz ≡ 0,

respectively. Consequently, R(t), from (42), is also exact volume-preserving, and its generating
form, by (13), is

(48) η(t) = ηy(t) +Ry∗(t)ηx(t).

Finally, since V0 is globally Liouville, Lemma 2.4 implies that the transitory vector field V (t),
from (43), is as well, with the Lagrangian form

λ(t) = R∗(t)λ0 + LV (t)η(t),

as obtained from (14) using (39), (42), (43), and (48).
To apply the action-flux formulas, we must identify the appropriate boundaries over which

to integrate. There are two possible types of lobes (interior lobes Rint
t and boundary lobes

R∂
t ; see Figure 13) and three possible types of bounding surfaces, corresponding to portions

of Πin, Πout, and ∂M . We need only specialize (18) to integrate the two-form α over these
bounding surfaces.

Since the integral of the two-form α over any subset of Πin
0 is identically zero, (18) implies

that an integral over any lobe boundary component U j
τ ⊂ Πin

τ can be reduced to3

(49)

∫
Uj
τ

α =

∫ τ

0

(∫
∂Uj

s

λ

)
ds.

A similar simplification applies to boundary components Siτ ⊂ Πout
τ for the two cases of Πout

τ

that we study.
The integrals over portions of ∂M can be simplified by noting that dynamics on this surface

under the stationary vector fields P = F is trivial due to axisymmetry and the invariance

3Note that here the Uj
τ are not unstable manifolds of any past-hyperbolic orbit; indeed, their surface areas

do not vanish in either direction of time. We nevertheless use a notation consistent with that of the previous
sections; i.e., Uτ is a past-invariant surface rather than a past unstable manifold. Similar notation is used for
a future-invariant surface, Sτ .
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Figure 15. Percent composition of fluid A in the positive extracted hemisphere. Monte Carlo simulation
results with N = 106 are shown as the circle and square markers (see legend). The maximum computed flux is
denoted with an ∗.

of ∂M . Indeed, if ρ and ζ are the azimuthal and inclination angles, then the flow of F |∂M
reduces to

(50) ϕF
t (ρ, ζ) =

(
ρ, 2 arctan

(
tan(ζ/2)e2(t−t0)

))
on the droplet boundary. We use this result to compute the action integrals outside the
transition interval.

Since ∂M is heteroclinic from p1 to f2 under the transitory flow, an integral over a surface
Bτ ⊂ ∂M can be computed using the flow of F in either (19) or (20):

(51)

∫
Bτ

α =

∫ τ

−∞

(∫
ϕF
s,τ (∂Bτ )

λ

)
ds = −

∫ ∞

τ

(∫
ϕF
s,τ (∂Bτ )

λ

)
ds.

Here we simply choose to evaluate the integral that converges faster. It may happen that one
of the equilibria f i of F lies on the boundary ∂Bτ ; in this case, only one of the two integrals
(51) converges. In the rare case that both equilibria lie on ∂Bτ , we can modify the flow F
by applying a rotation so as to effectively move the equilibria. Convergence of these integrals
can also be accelerated by estimating their exponential tails as discussed in Appendix B.

As always, care must be taken to ensure that the intersection curves are oriented to
be consistent with a right-handed outward normal to the lobes. For example, the correct
orientation for integration over the lobe boundary components U j

τ is indicated in Figure 14.

5.4. Results. Figure 15 summarizes the fluxes computed using the shape model (46) for
two values of the amplitude ξ, the two choices of extraction plane in (40), and various transition
times. The curves show the fraction of fluid A found in the positive extracted hemisphere, Fτ .
Notice that, in each case, Φ reaches a maximum at an intermediate transition time. These
maximal fluxes are given in Table 1.

As τ increases, the intersection curves IG become increasingly clustered near the boundary
of the parameter space, as can be seen in Figure 14. Eventually, this clustering becomes so
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Table 1
Maximum percent flux Φ and corresponding τ .

Πout
τ

ξ = π/8 ξ = π/4

τ Φ (%) τ Φ (%)

{x = 0} 3.25 30.22 2.7 32.97

{y = 0} 3.5 64.81 2.6 75.68

pronounced that the curves cannot be distinguished numerically. This seems to imply that
these regions near the boundary contribute little to the flux; however, the transition map
expands the small initial differences between these curves by several orders of magnitude.
The result is a significant contribution to the overall flux from the unresolved portions of the
intersections. Thus, the computation of Φ for larger τ is not numerically feasible using the
action-flux formulas. However, the use of both forward and backward integration over the
transition interval can ameliorate resolution problems, allowing somewhat larger τ values to
be reached; see Appendix B.

To validate our results, we again employ the Monte Carlo technique outlined in section
4.3. Its implementation is simple since we have analytical formulas for the boundaries of the
injection and extraction hemispheres P0 and Fτ . Since P0 is simply half a ball of radius 1,
the overall flux is estimated by

Φ ≈ 2

3
π
Nin

N
.

The results for N = 106 are indicated in Figure 15 by the open circles and squares. We again
find that the difference between the Monte Carlo and action-flux computations of Φ is typically
less than the estimated Monte Carlo error (36). Only for large τ does the difference between
the two become significant. Note also that the Monte Carlo computations are inefficient
when the flux is small; most of the computational effort is wasted in this case since most
sample trajectories do not contribute to Nin. As a reflection of this, the error also grows,
as indicated in (36). By contrast, the action-flux formulas remain accurate when the flux is
small. For example, Monte Carlo simulations do not give accurate results for τ < 0.5 when
Πout

τ = {x = 0} in Figure 15.
An advantage of the Monte Carlo method is that it appears to give reasonably accurate

results for larger transition times than the action-flux computations. However, this method has
several limitations. If the past and future invariant regions had more complex boundaries than
the hemispheres in our model, then initialization of the trajectories in P0, and determination
of whether they are advected to Fτ , would require a high-resolution representation of the lobe
boundary surfaces. This is computationally expensive due to the exponential stretching that
occurs over the transition interval. The same problem occurs, even when the regions have
analytically simple definitions, if there is more than one lobe and the computation of individual
lobe volumes is of interest. On the other hand, calculation of individual lobe volumes using
the action-flux formulas involves no additional effort: each is computed by the action-flux
formulas for the particular intersection curves on its boundary.
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6. Conclusions. We have given a quantitative analysis of transport between Lagrangian
coherent structures in aperiodic, 3D flows and have validated our results using Monte Carlo
methods. The coherent structures for the transitory case are simply past- and future-invariant
regions, and transport corresponds to the flux from the former to the latter. We rely on the
action-flux formulas of section 3 to provide a general framework for computing lobe volumes
in n-dimensional, globally Liouville flows. An advantage of these formulas is that lobe volume
computations require relatively little Lagrangian information: only the orbits of codimension-
two intersections of lobe boundary components need to be computed. Indeed, we found that
high-resolution representations of these intersections can be obtained from a root-finding and
continuation method, which is seeded using only a very coarse representation of the lobe
boundary itself. An unusual aspect of the droplet model of section 5 is that that lobes are not
bounded by hyperbolic manifolds of past- or future-hyperbolic orbits—the bounding surfaces
are simply invariant under the stationary vector fields P and F .

Mixing in droplet models similar to that of section 5 has been treated in [48] and, in the
steady case, in [50]. Even though these studies computed mixing within a droplet, they did not
address finite-time transport between coherent structures. Our model of smooth transitions
in a serpentine mixer is perhaps more realistic than the instantaneous transitions used by
[48], and we plan in the future to compare our present results with direct simulations of the
Navier–Stokes equations.

It was observed in section 5 that there is an optimal transition time that maximizes
intradroplet transport. We would like to further investigate the effects of microchannel shape
and choice of the injection and extraction planes on transport. Ultimately, we hope to find
optimal channel shapes to aid in the design of efficient microfluidic mixers.

To make this study more relevant to fluid flows, it will also be valuable to go beyond
transport and study diffusive mixing. The inclusion of diffusive and reactive processes within
the transitory framework could help in the development of a quantitative comparison between
transport and various mixing norms. Such an improved understanding will benefit applications
ranging from the design of more efficient industrial and microfluidic mixing devices to the
effective large-scale recovery of contaminants in the ocean and atmosphere.

Appendix A. Some notation. Here we set out our notation, which follows, e.g., [1]. We
denote the set of k-forms on a manifold M by Λk(M). If α ∈ Λk(M) and V1, V2, . . . , Vk are
vector fields, then the pushforward, R∗, of α by R is

(52) (R∗α)x(V1, V2, . . . , Vk) = αR−1(x)((DR(x))
−1V1(x), . . . , (DR(x))

−1Vk(x)).

The pushforward can be applied to a vector field V as well:

(53) (R∗V )(x) = DR(R−1(x))V (R−1(x)).

The pullback operator is

R∗ = (R−1)∗.

The interior product, or contraction, of α with V is the (k − 1)-form

ıV α = α(V, ·, . . . , ·).
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Suppose that ϕt1,t0 :M×R2 →M is the (C1) flow of a vector field V (x, t), so that ϕt0,t0(x) = x
and d

dtϕt,t0(x) = V (ϕt,t0(x), t). Then the Lie derivative with respect to V is the differential
operator

(54) LV (·) ≡ d

dt

∣∣∣∣
t=t0

ϕ∗
t,t0(·).

The key identity for the derivative is Cartan’s homotopy formula:

(55) LV α ≡ ıV (dα) + d(ıV α).

Note that L behaves “naturally” with respect to the pushfoward:

(56) R∗LV α = LR∗VR∗α.

Appendix B. Remarks on computing lobe volumes. Here we comment on several tech-
nical aspects of our numerical implementation of the action-flux formulas. We describe an
efficient method for computing the intersection curves Iτ , discuss examples in which the
action-flux formulas may be applied even if the surface areas of lobe boundary components
do not vanish as t → ±∞, and remark on several ways to accelerate the convergence of the
integrals in (19) and (20).

Computing the curves Iτ = ∂Pτ ∩ ∂Fτ , as discussed in the examples of sections 4 and 5,
essentially amounts to a root-finding and continuation problem. The Iτ are defined to be zero-
level-sets of some function on a 2D parameterization of ∂P0. This parameterization is sampled
with a coarse grid, neighboring grid-points that bracket the zero-crossing are identified, and
these brackets are refined along grid lines to produce “seed” points that lie on Iτ . A circle
of radius δ (a prespecified maximum Euclidean distance between neighboring curve points) is
centered at each seed, and a 1D root-finder on the angle around the circle is used to find a new
point on Iτ . The existence of this new point is guaranteed by the topology of Iτ , provided
the continued curve does not intersect the boundary of M . A new δ-circle is then centered
at this new point, and the continuation is repeated until either the curve closes on itself, the
angle between consecutive estimates of the curve tangent grows too large (this occurs when
the curvature of Iτ is large), or the curve intersects the domain boundary. In regions where
the curvature of Iτ is large, refinement is easily performed by reducing the radius δ. Finally,
care must be taken to ensure that a given seed does not lie on a previously tracked curve.

Even if a well-defined lobe exists, and the curves Iτ are computed as described above, it
may be the case that the α-surface area of some component of the lobe boundary does not
vanish in either direction of time under ϕP and ϕF . For example, in section 4, U0 wraps
entirely around W u

0 (p), and so its surface area never vanishes under ϕP ; consequently, the
action-flux formulas (19)–(20) cannot be used to compute the second integral in (34). We
can resolve this problem by dividing U0 into subsurfaces whose α-surface areas do eventually
vanish under ϕP . For the case shown in Figure 16, there are four such subsurfaces, and it is
easy to see that U1

0 and U3
0 collapse to p as t → −∞, and U2

0 and U4
0 collapse as t → +∞.

Using (19) and (20), as appropriate, then gives

(57)

∫
U0

α =

∫ 0

−∞

(∫
∂U1

s+∂U3
s

λ

)
ds−

∫ ∞

0

(∫
ϕP
s,0(∂U2

0+∂U4
0 )
λP

)
ds.
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cut

cut

Figure 16. (a) Subsurfaces of U0, for the case shown in Figure 5(a), that collapse under the past flow ϕP

as t → ∞ (blue) or t → −∞ (red). Arrows on I1,2
G denote orientation with respect to a right-handed outward

normal. (b) Subsurfaces Uj
0 ⊂ M . Arrows denote direction of flow under ϕP . Blue (red) regions collapse to p

in forward (backward) time.

Here we emphasize that for the second integral the past flow ϕP is to be used to evolve the
boundaries, and the integrand is λP , the Lagrangian form for the past vector field P .

It is also possible to modify the application of (19) and (20) by choosing to evolve trajec-
tories under a flow that does not coincide with the transitory flow ϕ. Indeed, as we remarked
in section 3, once a slice of codimension-one manifold is specified, Theorem 3.1 is valid for its
evolution under any globally Liouville flow. For example, the areas of Sjt in (33) vanish under
ϕF both as t → ∞ and as t → −∞. Thus, since F itself is a globally Liouville vector field,
(19) may alternatively be applied with the replacements ϕ→ ϕF and λ→ λF to achieve the
same answer as in (33); that is,

(58)

∫
Sj
τ

α =

∫ τ

−∞

(∫
ϕF
s,τ (Ij

τ )
λF

)
ds.

We found it most efficient to select (33) or (58) depending upon whether the intersection curve
was closer to f1 or f2 at t = τ . In practice the intersection curves were closer to f1, and so
we used the past integral, (58), for S1τ and the future, (33), for S2τ .

In addition to an appropriate choice of flow, the convergence of the time integrals in
(33) and (58) can be further accelerated by extrapolation. Since the intersection curves
lie on the stable manifolds of the periodic orbits fk, they converge exponentially to these
orbits in forward time; the contour integrals necessarily converge exponentially to zero in this
same limit. Thus, the convergence of the time integral can be accelerated by estimating the
exponential tail of its integrand (a time-dependent contour integral) using the local expansion
and contraction rates, σ (for the ABC case σ =

√
AC), about the hyperbolic periodic orbits

fk (28). For example, the integral in (33) can be truncated at time t to give the estimate

(59)

∫
Sj
τ

α ≈ −
∫ t

τ

(∫
Ij
s

λ

)
ds − 1

σ

∫
Ij
t

λ.
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In practice we increase t until this estimate converges to some desired tolerance. Similar
extrapolation is used to accelerate the integrals (51) in section 5.

Additional simplifications of the flux computation arise if the past or future vector fields
are simple enough that explicit solutions can be found. For example, for the transitory ABC
vector field, both P and F are integrable, and the analytical solutions on the separatrices are
known [52]. Using these analytical formulas in the action-flux computations greatly reduces
computation time. We use a similar simplification in section 5.3 for the flow on the droplet
boundary. When this simplification applies, the only numerical advection that that must be
performed is over the transition interval [0, τ ].

For the computations of section 5.3, the separation of nearby trajectories affects the eval-
uation of (49) and (51) even when the intersection curves IG are numerically distinguishable.
Indeed, the distance between neighboring points on the numerically computed intersection
curves grows nonuniformly. Consequently, for large τ , the resolution of Iτ may be quite poor
even if I0 is well-resolved. One way to ameliorate this effect is to use a second numerical
representation of the intersection curves at time t = τ by solving a problem similar to (47) for
a parameterized representation of Πout

τ . These curves can be integrated backward. Of course,
in this case the resolution will degrade as t decreases. If we use the two representations over
the first and second halves of the transition interval, then the accuracy of the integrals (49)
and (51) is improved.

Finally, if the transitory flow has symmetries, then these can be exploited to simplify the
computations. For example, the vector field (43) for the microdroplet example, with rotations
(46), is reversible. That is, there is a reversor Θ :M →M such that

(60) Θ∗V (x, t) = −V (x, τ − t).

This implies that ΘT = T−1Θ, and moreover, when Πout
τ = Πin

0 , that Iτ = ΘI0 [33]. Thus
if we choose the numerical representations at 0 and τ to respect this symmetry, the forward
and backward iterations over the half-transition intervals are identical. This is much more
efficient than solving the root-finding problem (47) at both t = 0 and t = τ .

Acknowledgment. Useful conversations with Michel F. M. Speetjens are gratefully ac-
knowledged.
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