
Twist Singularities for Symplectic Maps

H. R. Dullin
Department of Mathematical Sciences

Loughborough University

Loughborough LE11 3TU, UK

H.R.Dullin@lboro.ac.uk

J. D. Meiss
Department of Applied Mathematics

University of Colorado

Boulder, CO 80309-0526

James.Meiss@Colorado.EDU ∗

October 24, 2002

Abstract

Near a nonresonant, elliptic fixed point, a symplectic map can be transformed into
Birkhoff normal form. In these coordinates, the dynamics is represented entirely by
the Lagrangian “frequency map” that gives the rotation number as a function of the
action. The twist matrix, given by the Jacobian of the rotation number, describes the
anharmonicity in the system. When the twist is singular the frequency map need not be
locally one-to-one. Here we investigate the occurrence of fold and cusp singularities in
the frequency map. We show that folds necessarily occur near third order resonances.
We illustrate the results by numerical computations of frequency maps for a quadratic,
symplectic map.

The dynamics in the neighborhood of a linearly stable periodic orbit of a
Hamiltonian flow or fixed point of a symplectic map can be elucidated by con-
sideration of their Birkhoff normal forms. The normal form has action variables,
J, which are formal invariants when the rotation vector, ω, of the elliptic orbit
is nonresonant. The conjugate angle variables θ rotate with a frequency vector
2πΩ(J) that depends upon the action. When ∂Ω/∂J is a nondegenerate matrix,
the system has twist. For such systems the map from actions to frequencies
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European Commission Grant HPRN-CT-2000-00113 (‘MASIE’). JDM was supported in part by NSF grant
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is locally smooth and one-to-one; this is a requirement for the application of
KAM theory which implies that sufficiently incommensurate tori persist in the
full dynamics. Our goal in this paper is to study the simplest degeneracies of
the twist, the fold and cusp singularities. The fold has been extensively studied
elsewhere for the case of area-preserving maps. Here we extend these results to
higher-dimensional symplectic maps.

1 Introduction

For a symplectic map with an elliptic fixed point, the Birkhoff normal form can be written
in terms of angle θ ∈ Td and action J ∈ Rd coordinates as

θ′ = θ + 2πΩ(J)

J ′ = J . (1)

Here Ω(J) is the rotation vector as a function of the action, and the rotation vector at the
elliptic fixed point is denoted ω = Ω(0). The fixed point is said to be nonresonant when the
equation m · ω = n has no solutions for m ∈ Zd and n ∈ Z. The map is symplectic when
dθ′ ∧ dJ ′ = dθ ∧ dJ , which requires that Ω be the gradient of a scalar function, Ω = DS(J).
The “twist” of this map is defined to be the d×d dimensional matrix τ(J) = DΩ(J) = D2S.
It represents the anharmonicity of the system.

If the twist at J = 0 is nonsingular and there are no low-order resonances, then Moser’s
twist theorem implies that the elliptic fixed point is a limit point of a family of invariant
tori [1, 2]. For the area-preserving case, this implies that the fixed point is stable. Though
det(τ(0)) = 0 seems special, it occurs with codimension-one in the neighborhood of a tripling
bifurcation of an elliptic fixed point [3, 4]. That is, if variation of a parameter causes the
frequency at the elliptic fixed point to cross 1/3, the twist at the elliptic fixed point will
generically cross zero for a nearby parameter value. Consequences of this were observed by
[5, 6, 7].

Vanishing of the twist for the two-dimensional case leads to a number of phenomena,
including: instability [8, 9, 4], reconnection bifurcations between unstable and stable mani-
folds of periodic orbits [10, 11], orbits that can chaotically drift among multiple island chains
with the same frequency [12], exotic “meandering” invariant circles [13], and unusual renor-
malization structure for critical twistless invariant circles [14, 15, 16]. The structures that
arise depend upon the number of vanishing derivatives of S—if j derivatives vanish then j
island chains with the same frequency can arise nearby in parameter space [17].

Here we begin an investigation of the twist singularities that occur in the neighborhood
of an elliptic fixed point of four-dimensional, symplectic maps. We start by studying the
form of typical singularities in the frequency map defined by Ω(J). These singularities have
been classified by Thom [18] and Arnold [19]. The stable singularities for d = 2 are the fold
and cusp.

We then study a polynomial map in the neighborhood of an elliptic fixed point. If we
assume there are no low-order resonances, the map can be transformed to Birkhoff form to
some finite order in a power series expansion in the actions. We compute the twist and
show that it generally vanishes near several resonances. We compare the calculations of the
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twist with numerical calculations of the frequency map based on Laskar’s algorithm [20, 21]
to observe the folds and cusps. Finally we use the technique of Meiss [22] to estimate the
volume of the elliptic region in the neighborhood of the fixed point.

2 Vanishing Twist

Since the frequency map is generated by S through Ω(J) = DS, this map is an example of
a “Lagrangian map.” Recall that a d-dimensional submanifold of a symplectic manifold is
Lagrangian if the symplectic form vanishes identically for any pair of tangent vectors to the
submanifold. The submanifold L = {(θ, J) : θ = 0} is Lagrangian, and its image under the
Birkhoff normal form (1), f(L) = {(θ, J) : θ = DS(J)}, is therefore also Lagrangian. Since
this Lagrangian manifold is a graph over J , we can trivially project out the J direction,
defining

J
Ω7→ DS(J) = ω + τ0J + 1

2
J tτ1J + . . . ,

to be the frequency map, Ω. The twist is defined to be the Jacobian of the frequency map

τ(J) = DΩ(J) = D2S(J) = τ0 + τ1J + . . . .

where τ1 is a 1-form valued matrix.
Since Ji ≥ 0, the domain of the frequency map is the positive orthant in J , so that its

image is a cone in Ω with vertex at ω, see Fig. 1. 1 If the twist is nonsingular at J , then the
frequency map is a diffeomorphism near J . Here we discuss the form of the singularities in
the frequency map that are created as det τ goes through zero, i.e., of the critical points of
Lagrangian maps.
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Figure 1: Sketch of the frequency map for d = 2. The positive quadrant in action space is mapped to a
cone in frequency space. Throughout this paper the solid curves denote the J1 axis or its image and the
dashed curves the J2 axis or its image. The vectors label the columns of τ0 as τij and the four entries in τ1

as σi, see (6).

1Most of the figures in this paper are available in color in the on-line version.

3



2.1 Singularities of Maps

Here we briefly recall a few facts about the singularities of smooth maps [23]. A map
f : Rm → Rn has a critical point at x if its Jacobian, Df(x), has less than maximal rank,
i.e., if rank(Df) < min(m,n). The image, f(x), of a critical point is a critical value. A map
is said to be (Ck) stable at x if every map that is sufficiently close to f (in the sense that
the first k derivatives are close) is locally diffeomorphic to f . The equivalence class of maps
that are locally diffeomorphic to f is the “germ” of f . If the dimension is low enough, the
germ can be represented by a fixed polynomial map; more generally “moduli,” which are
either parameters or arbitrary functions, are needed to represent the germ. The equivalence
class of maps represented by the germ in the neighborhood of a critical point is called a
“singularity.”

For example, when m = n = 2, there are only two stable singular germs; both correspond
to singularities for which rank(Df) = 1. These are the “fold,” represented by f(x) = (x2

1, x2),
and the “cusp,” represented by f(x) = (x3

1 + x1x2, x2). The case for which the rank of Df
is 0 is not stable in two dimensions. Since the fold and cusp are stable, every nearby map
has nearby critical points of the same form.

2.2 Singularities of Lagrangian Maps

A Lagrangian map is defined by the projection of a Lagrangian manifold onto a Lagrangian
plane. For example, in geometrical optics the Lagrangian manifold corresponds to a wave
front together with its unit normals—the velocity vectors, and the projection is to physical
space. Correspondingly, the set of critical values of a Lagrangian map is called a “caustic.”
A Lagrangian manifold can be represented by a single, generating function [24]; if, as in our
case, the Lagrangian manifold is a graph over the action space, (θ, J) = (DS(J), J), the
generating function is S(J). The Lagrangian map is the projection of the manifold onto the
action space, i.e. Ω : Rd → Rd defined by J 7→ DS(J). The map has a critical point at J if
τ = D2S(J) is singular.

The standard theory of the singularities of Lagrangian maps has been formalized by
Thom and generalized by Arnold [23]. When d = 1 there is only one stable singularity, the
“fold.” For d = 2 the “cusp” singularity is also stable. For d = 3, three new singularities are
stable, the “swallowtail” and two forms of point singularities (pyramids and purses).

The fold singularity is denoted A2. When d = 2, a Lagrangian map with a fold is locally
equivalent to the map generated by

S(J) = J2
1 + J3

2 . (2)

The critical set, determined by 0 = det(D2S) = 12J2, is the horizontal axis. The caustic is
Ωc = Ω(J1, 0), which is the axis Ω2 = 0. The action of the map is to fold the J-plane into
the upper half Ω-plane.

There are two cusp singularities, denoted Aε
3, where ε = ±. For d = 2, the germ of these

is represented by the generating function

S(J) = (J1 + J2
2 )2 + εJ4

2 . (3)
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Here the critical set is the parabola J1 = −(1 + 3ε)J2
2 , and the caustic is the semi-cubical

parabola, or cusp:

Ωc = −2ε

(
3J2

2

4J3
2

)
.

In the exterior of the cusp, the map is one-to-one, while in the interior it is three-to-one.
Generally the set of critical points, det τ = 0, is a smooth codimension-one submanifold

in J-space, i.e. a curve when d = 2. The caustic is locally smooth whenever the image
of the tangent vector to the critical set is nonzero. This tangent, v, is determined by
(D det τ)T v = 0, and its image τv is nonzero if v is not in the kernel of τ . In terms of the
generating function, this condition reduces to the equation

δ = S11(3S12S122 − S11S222)− S12(3S12S112 − S22S111) 6= 0 , (4)

on the curve S11S22 = S2
12; the subscripts on S indicate partial derivatives. When δ 6= 0, the

singularity is locally a fold, and when δ = 0, the image is a cusp point whenever the image
of the unit tangent vector is not continuous. This is generic, since it happens whenever at
least one of the components of τv reverses sign upon crossing the zero.

2.3 Twistless Bifurcations

Since the Birkhoff normal form is computed as a power series about J = 0, and the physical
domain corresponds to Ji ≥ 0, we now consider singularities that occur at the origin for a
map whose domain is the positive orthant. The behavior of the frequency map at the origin
is determined by the rank of τ0 = D2S(0). When this is less than d, the image collapses to
a subspace of dimension rank(τ0). Generally if a parameter is varied so that τ0 goes through
rank d − 1, the orientation of the image is reversed. If we keep nonlinear terms in J , this
generally corresponds to the passage of a fold caustic through ω = Ω(0). Since the passage
of det τ0 through zero results in qualitative changes in the dynamics, we call it a “twistless
bifurcation.”

The critical points in the neighborhood of J = 0 can be studied by expanding S in a
series in the actions. For d = 2, this series begins

S(J) = ω · J +
1

2
aJ2

1 + bJ1J2 +
1

2
dJ2

2

+
1

6

(
σ1J

3
1 + 3σ2J

2
1J2 + 3σ3J1J

2
2 + σ4J

3
2

)
. (5)

For this generating function, the twist is

τ(J) = τ0 + τ1(J) =

(
a b
b d

)
+

(
σ1J1 + σ2J2 σ2J1 + σ3J2

σ2J1 + σ3J2 σ3J1 + σ4J2

)
. (6)

The columns of τ0, (a, b)T and (b, d)T , are tangent to the images of the positive J axes at ω,
and so define the opening angle of the frequency cone, recall Fig. 1. Vanishing of the twist at
the origin occurs if the columns of τ0 are parallel or antiparallel. If the vectors are parallel,
the frequency cone collapses at the twistless point, and if they are antiparallel, it opens to
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180◦. To next order in J , the boundaries of this cone are parabolas whose symmetry axes
are given by the vectors (σ1, σ2)

T and (σ3, σ4)
T . Depending upon the orientation of these

vectors, the cone boundaries are curved either toward its interior or its exterior. These
then determine whether the frequency map is locally one-to-one when det τ0 is positive or
negative.

Finally the twist could vanish if both elements in one column of τ0 are zero, i.e., when
the kernel of τ0 coincides with a coordinate axis. Since this requires two conditions on τ0, it
is codimension-two. This corresponds to the transition between the parallel and antiparallel
cases.

The critical set, det τ = 0, for (6) is a quadratic curve. When the curve is an ellipse, its
caustic contains three cusps, and when it is a hyperbola one branch of the caustic is a fold
and the other has a single cusp. Since we consider a power series about the origin, we are
most interested in the singularities when they occur at the image of J = 0 which is Ω = ω.
From (4), there is a cusp at ω when

δ(0) = a(3bσ3 − aσ4)− b(3bσ2 − dσ1) = 0 .

Otherwise the image of the origin is a fold point. We will primarily study folds in this paper,
leaving the study of cusps to a later paper [25], so we assume that δ(0) 6= 0.

The fold can cross J = 0 in two ways, depending upon the slope of the critical set at the
origin:

m = −dσ1 + aσ3 − 2bσ2

dσ2 + aσ4 − 2bσ2

.

If m is negative, then as det τ0 crosses zero the fold line appears to be created or destroyed
at the origin, since it moves through the nonphysical negative J quadrants into the first
quadrant. However, if the fold has positive slope then there will be a nearby fold for both
signs of det τ0.

We show the four possible cases in Figs. 2–5. The columns of τ0 pass through the parallel
state in Fig. 2 and Fig. 3, and the antiparallel state in Fig. 4 and Fig. 5. When the slope
of the critical set is positive as in Fig. 2 and Fig. 4, the fold curve is present on both sides
of det τ0 = 0, but it intersects the image of the J1 axis on one side and the J2 axis on the
other. When the slope is negative as in Fig. 3 and Fig. 5, the fold is present in the image of
the positive quadrant only when det τ0 < 0.

3 Elliptic Fixed Points

Suppose f : R2d → R2d is a symplectic map and z = f(z) is a fixed point. We call the
eigenvalues of Df(z) its “multipliers,” and denote them by µi. Since Df is a symplectic
matrix, its multipliers come in reciprocal pairs {µk , 1/µk, k = 1 . . . d}, and the corre-
sponding eigenvectors span a two-dimensional symplectic subspace. We define traces in each
symplectic subspace as

ρk = µk + 1/µk ,

and the residues [26] as

Rk =
1

4
(2− ρk) . (7)
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Figure 2: A frequency map when the columns of τ pass through the parallel state and the critical curve
has positive slope. Here ω = (0, 0) and σ = (−1, 1,−2, 0). For the left panel τ =

[
(3, 1)T , (1, 0.5)T

]
, and

for the right panel, τ =
[
(0.8, 1)T , (1, 0.5)T

]
. The grid of thin curves is the image of the positive quadrant

which is bounded by the images of the J1-axis (solid), and the J2-axis (dashed) . The caustic (dotted curve)
intersects the image of the J1-axis when det τ0 > 0, and the J2-axis when the orientation reverses.
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Figure 3: A frequency map when the columns of τ pass through the parallel state and the critical curve
has negative slope. Here ω = (0, 0) and σ = (3,−1.5,−3, 1.5). For the left panel τ =

[
(1, 1.1)T , (1.1, 1.5)T

]
,

so that det τ > 0, and for the right panel τ =
[
(0.4, 1.1)T , (1.1, 1.5)T

]
, so that det τ < 0. The critical set

enters the positive quadrant when det τ < 0 and intersects both boundaries of the cone, thus the caustic
(dotted curve) is only visible in the right panel.
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Figure 4: A frequency map when the columns of τ pass through the antiparallel state and the slope
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Figure 5: A frequency map when the columns of τ pass through the antiparallel state and the slope
of the critical curve is negative. Here ω = (0, 0) and σ = (−1,−1,−2, 0). For the left panel τ =[
(−2.2, 1)T , (1,−0.5)T

]
and the caustic is not visible. For the right panel τ =
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]
has

negative determinant and a fold is present.
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When 0 ≤ Rk ≤ 1, the multiplier µk is on the unit circle. We assume, more strongly that
0 < Rk < 1 and Rk 6= Rj, for k 6= j. In this case the origin is a linearly stable fixed point; it
is called “strongly-stable” following Arnold [1]. This excludes the saddle-center and period-
doubling bifurcation values µ = ±1, and the Krein collisions µk = µj. Though a fixed point
may be linearly stable at these resonant points, it is not generally so.

For an elliptic fixed point, we define the rotation vector ω ∈ Rd by

µk = e2πiωk , k = 1 . . . d . (8)

Since the multipliers come in reciprocal pairs, we can always choose ωk ∈ (0, 1
2
), for then the

reciprocal multiplier corresponds to negative rotation number. With this convention, the
traces, ρk = 2 cos 2πωk and the residues,

Rk = sin2 πωk =
1

4
|µk − 1|2 , (9)

are one-to-one in ωk.

3.1 Kinematics of Resonances

In the neighborhood of an elliptic fixed point, a map can be transformed into the Birkhoff
normal form (1) to arbitrary order whenever it is not resonant. A resonance corresponds to
an integer vector m = (m1, . . . .md) ∈ Zd such that

µm ≡ µm1
1 µm2

2 . . . µmd
d = 1 . (10)

Using (8), this is equivalent to the existence of n ∈ Z such that

m · ω = n . (11)

Thus, in frequency space, a resonance corresponds to a codimension-one plane, and the set
of all resonances is the set of planes with integral normal vectors, m, and rational intercepts
with the coordinate axes. Thus, the collection of resonances can be labeled by vectors
(m,n) ∈ Zd+1.

Since (11) is homogeneous in (m, n), we can assume that the components of this vector
are coprime without loss of generality. However we need not consider all such vectors. Two
resonances are equivalent if they can be transformed into one another by ω′ = ω − l, where
l ∈ Zd. The corresponding action on the resonance is n → n′ = n−l·m. Similarly, resonances
are equivalent if they can be transformed into one another by ω′ = −ω, which induces the
action n → n′ = −n. A well known lemma [27] implies that there exists an integer vector
l ∈ Zd such that 0 ≤ n′ < gcd(m). In particular if the components of m are coprime, then
n can always be chosen to be 0, since gcd(m) = 1.

Since ρi = 2 cos(2πωi), the resonance condition can be written in terms of the traces as

d∑
i=1

mi arccos(ρi/2) = 2πn . (12)

Generally this equation can be transformed into a polynomial in the traces by using Cheby-
shev polynomials

Tm(ρ/2) ≡ cos(m arccos(ρ/2)) . (13)

Since ρ ∈ [−2, 2] when the fixed point is elliptic, this polynomial is real.
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3.2 Resonances for Four-Dimensional Maps

For d = 2, we can convert the resonance condition (12) to polynomial form simply by moving
the second term to the right-hand side and taking the cosine of both sides. This gives the
polynomial

Rm1m2 = Tm1(ρ1/2)− Tm2(ρ2/2) ,

whose zeros correspond to the (m1, m2, n) resonances. Note that n has vanished from this
form, as it must, since n does not appear in (10). Moreover, it is clear from this form that
the signs of the mi are irrelevant since Tm(x) = T−m(x). This can also be seen by noting that
the traces involve the multiplier and its reciprocal symmetrically and so do not depend upon
whether µ or µ−1 is involved in the condition (10). The first few resonance polynomials,
written as functions of the residues, are

R10 = −2R1

R11 = −2(R1 −R2)

R20 = 8R1(R1 − 1)

R21 = 8R1(R1 − 1) + 2R2

R30 = −2R1(4R1 − 3)2 .

(14)

If the vector m is reducible, i.e., gcd(m1, m2) 6= 1, then the polynomials Rm can be
factored. This follows from the relation

Tkm(x) = Tk(Tm(x)) ,

which is a simple consequence of the definition (13). In particular, note that if m1 = km′
1

and m2 = km′
2 then

Tm1(x)− Tm2(y) = Tk(Tm′
1
(x))− Tk(Tm′

2
(y)) ,

and since the polynomial equation p(x)− p(y) always has a factor x− y, we can write

Rm1m2 = P (R1, R2)Rm′
1m′

2
,

where P is a polynomial of degree (k − 1) max(m′
1, m

′
2). This process can be repeated for

each common factor in the components of m. When this is completed, each of the factors
corresponds to a particular value of n; since they will appear as denominators in the Birkhoff
normal form, we denote these byDm1m2n. When m is coprime, then n = 0 so thatDm,0 ∝ Rm,
but we adjust the sign and divide out inessential constants. Here are the first few cases:

D201 = 1−R1 ;

D021 = 1−R2 ;

D301 = 4R1 − 3 ;

D031 = 4R2 − 3 ;

D210 = 4R1(R1 − 1) + R2 ;

D120 = 4R2(R2 − 1) + R1 .

(15)
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To plot the resonance curves in the trace or residue space, we can use parametric curves.
For example, if m2 6= 0, the (m, n) resonance is the curve

ω1 = tm2, ω2 = −tm1 +
n

m2

.

Using the definition of the traces, this gives the curves

ρ1(t) = 2 cos(2πm2t) ,

ρ2(t) = 2 cos

(
2πm1t− 2π

n

m2

)
.

Therefore the resonant curves in the space of traces or residues are Lissajous figures.
In the left panel of Fig. 6 we show the resonance curves up to order four. The right

panel of the figure shows resonances up to order 9. While this picture may seem similar to
the familiar “Arnold web” of resonances in action space [28], it represents resonances at the
fixed point in the parameter space of a family of maps and not resonances in the space of
initial conditions (e.g. actions) of one map.
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Figure 6: Resonances curves up to order 4 (left panel) and order 9 (right panel) in the space of residues.

4 Quadratic Symplectic Maps

Here we will illustrate the formation of twist singularities by studying a four-dimensional
quadratic, symplectic map that has a strongly-stable, elliptic fixed point. The general form
for quadratic symplectic maps has been found by Moser [29], generalizing Hénon’s quadratic
map [30] to higher dimensions. Since this map does not necessarily have fixed points, we
start with that assumption to construct our example. In the Appendix we will show how to
obtain our map from Moser’s general quadratic map.
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We will use a Lagrangian generating function to write our map in “standard” form

L(x, x′) = K(x′ − x)− V (x) , (16)

where K is the “kinetic” and V is the “potential” energy. The map is generated via the one
form y′dx′ − ydx = dL, giving

y = −∂L

∂x
= DK(x′ − x) + DV (x) ,

y′ =
∂L

∂x′ = DK(x′ − x) .

(17)

If this map has a fixed point, then we can shift it to the origin. The new generating function
then has no linear terms in V .

First we consider the quadratic Lagrangian when there is a strongly-stable fixed point at
the origin. In this case coordinates in phase space can be chosen so that the map is in real
block diagonal normal form, see e.g. [2]. Such a map is generated by a quadratic Lagrangian
of the form

L(2)(x, x′) =
d∑

k=1

sk

2

[
(x′

k − xk)
2 − 4Rkx

2
k

]
. (18)

Here the Rk are the residues of the fixed point, and the sk = ±1 are signs that determine the
Krein signature—effectively the direction of rotation in each canonical plane. The quadratic
Lagrangian (18) generates the linear map with matrix

M = diag

[(
1− 4Rk sk

−4Rksk 1

)
, k = 1 . . . d

]
. (19)

This is easily seen to be equivalent to the more common rotation matrix form [2].2

Now we want to consider nonlinear perturbations of this strongly-stable fixed point.
We represent the quadratic nonlinear terms in the map by adding a cubic potential to the
generating function,

V 3(x) =
∑

i+j=3

aijx
i
1x

j
2 . (20)

The standard map generated by (16) with V (x) =
∑

2skRkx
2
k+V (3)(x) and K(v) =

∑
skv

2
k/2

is

x′
k = xk + sky

′
k ,

y′k = yk − 4Rkskxk −DkV
(3)(x) .

(21)

2The matrix M can be written as M = B−1M ′B where M ′ is the symplectic rotation with diagonal
blocks

M ′
k =

(
cos 2πωk sk sin 2πωk

−sk sin 2πωk cos 2πωk

)
,

and B is symplectic with the blocks

Bk =
1

sin(2πωk)

(
0 1

− sin(2πωk) 2skRk

)
.
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A special case of this system is the “natural map” obtained when the Krein signatures
sk are equal. In this case, the definiteness of the kinetic energy imposes some restrictions on
the behavior of the system [31].

Note that the inverse of the map (21) is easy to obtain

x′
k = xk − skyk ,

y′k = yk + 4Rkskx
′
k + DkV

(3)(x′) .

Thus (21) is a polynomial diffeomorphism and has a polynomial inverse of the same degree.

4.1 Island Size

The map (21) has rich dynamical behavior which has only been partially explored. One
experiment that illustrates some of the phenomena is the computation of the size of the
stable island around the elliptic fixed point. For the two-dimensional case this experiment
was first performed by Hénon [30]. Those calculations clearly showed the strong dependence
of the size of the island on the residue, and in particular that it shrinks to zero at the ω = 1/3
resonance. Hénon used the length of the portion of the symmetry line that contains bounded
orbits as an estimate for the area of the island. The actual area of the island can also be
computed by “counting pixels” that contain trapped initial conditions [32], or by the more
efficient and precise method of exit time distributions [22].

The quadratic map (21) does have reversing symmetry with a fixed set {x = 0}. Thus,
by analogy with Hénon’s work we can estimate the trapped volume by looking only at initial
conditions starting on this symmetry plane and estimating the area for which the trajectories
are bounded. In Fig. 7 the results are shown for two different set of parameters. To determine
the trapped island area in the symmetry plane we assume that the region is star convex and
calculate its area by dissecting it into 100 equal sectors. For each ray bounding a sector the
boundary of the island is estimated by considering an orbit as trapped if it does not leave
the cube of bounded orbits for 1000 iterations. The transition point on each ray is found by
bisection. This is much more efficient than counting pixels would be, particularly for large
islands, though it does rely on the assumption of star convexity.

We observe that the island size is strongly influenced by the low order resonances. In the
left panel, the area shrinks to zero near and outside the (301) and (031) resonances, while
in the right the (210) resonance is most effective. Many of the resonances shown in Fig. 6
are visible in particular in the right picture. The fact that the (110) resonance increases
the island size (instead of decreasing it) is related to the fact that under the strong-stability
assumption, our map is diagonalizable when ω1 → ω2; generically, this would not be the
case, and the (110) resonance might have a strong effect in the opposite way.

For four-dimensional maps an explicit volume calculation by counting “voxels” is pro-
hibitively expensive; however, the exit time distribution technique [22] is much more efficient
and can still be carried out. To do this, we choose a hypercube C = {|x|, |y| < 2} that appears
to contain all of the bounded orbits. Moser [29] gives a larger box that contains all bounded
orbits, but from our numerical experiments we see that for our parameters C is sufficient.
The incoming set for C is the portion of the cube that is not in its image, I = C \ f(C). The
exit time, t+(z) for a point z ∈ I is the number of iterations until it leaves C, and the average

13
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Figure 7: Estimated size of the island of quasiperiodic motion around the elliptic fixed point of the cubic
natural map as a function of the residues using the area of trapped orbits on the symmetry plane. We choose
s1 = s2, and for the left panel set aij = 0.1 while for the right a30 = a21 = 0. The trapped area is indicated
with the hue on the color wheel, with red (0◦) corresponding to the smallest island, through green to blue
to magenta (359◦) as the largest.

exit time, < t+ >I is the average over all points in I. If we compute this average, then the
volume of the accessible region is given by < t+ >I µ(I). Thus the volume of trapped orbits
is µ(C)− < t+ >I µ(I), where µ is the measure of the respective sets.

The exit time computation is realized as a Monte Carlo simulation. First pick a random
point in the cube C. If its preimage is in C, then it is not in I, and it is discarded; otherwise,
determine the exit time of the point. The average over all such points is < t+ >I . The
probability PI of a point to be in I gives µ(I) ≈ PIµ(C). In this Monte Carlo realization,
statistical fluctuations can give an accessible volume slightly larger than µ(C) = 44. In this
case the trapped area is set to be 0.

Typical results are shown in Fig. 8, for the same parameters as in Fig. 7. The results
are qualitatively similar to the previous one, though the volume drops more dramatically
near higher order resonances than the area on the symmetry plane does, presumably because
volume has sampled new regions of phase space.

4.2 Normal Form

To transform (21) to Birkhoff normal form it is convenient to use complex coordinates that
diagonalize the linearization. Each block of (19) has eigenvalues µk and µ̄k, and eigenvectors

vk = 1
fk

(
1

sk(1− µ̄k)

)
and v̄k, for some normalization given by fk. Complex coordinates

(z, z̄) can be introduced so that the new system is diagonal by defining(
xk

yk

)
= vkzk + v̄kz̄k . (22)
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Figure 8: Estimated volume of bounded orbits in the island of quasiperiodic motion around the elliptic
fixed point of the cubic natural map as a function of the residues using the average exit time. Parameters
are the same as in Fig. 7.

The normalization of vk is arbitrary; because the nonlinear terms in the map are only func-
tions of xk, we choose it so that the relation xk = 1

fk
(zk + z̄k) is simple, i.e., so that fk is

real and positive. Since the Poisson brackets of the old and new variables are related by
1 = {xk, yk} = vk × v̄k{zk, z̄k}, this means that the cross product of the eigenvectors must
be imaginary and depends upon the Krein signature. We choose the normalization so that

{zk, z̄k} = 2isk ,

which implies that vk × v̄k = − i
2
sk, and gives

fk = 2
√

sin 2πωk = 2
√

2(Rk(1−Rk))
1/4 . (23)

Note that fk is real and nonzero because of the convention that 0 < ω < 1
2
. The inverse of

the transformation (22) can be written

zk =
2i

fk

[(1− µk)xk − skyk] . (24)

In these coordinates (21) is transformed into

z′k = µk

[
zk +

2isk

fk

, DkV
(3)

(
z + z̄

f

)]
(25)

together with the corresponding complex conjugate equations. Here DjV
(3)(x) denotes the

derivative of the nonlinear terms in the potential with respect to the jth argument, i.e., xj.
It is interesting that the sole effect of the Krein signatures in (25) is to modify the signs

of the terms in the gradient of the potential. Of course, when we transform back to real
variables, (24) shows that the direction of rotation depends upon sk as well.

Since V (3) is a polynomial, each nonlinear term in the complex map (25) has the form
of a constant times zj ≡

∏d
k=1 zjk

k z̄
̄k
k where the exponents are all nonnegative integers. The
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degree of the term is J =
∑d

k=1 jk + ̄k. In its simplest form, the Birkhoff normalization of
(25) proceeds iteratively to attempt to remove each term of degree J > 1 in the map using a
coordinate transformation of the form ζ = z + Z(z, z̄), where Z is a vector of homogeneous
polynomials of degree J . We start with J = 2 to remove the quadratic terms, and then
proceed successively to remove cubic terms and so forth.

In order to remove a particular term zj of degree J in the map for z′i, we require a term in

Zi with coefficient proportional to
(∏d

k=1 µjk

k µ̄
̄k
k − µi

)−1

. Since µ̄ = 1/µ the transformation

exists as long as
d∏

k=1

µ
jk−̄k
k 6= µi .

Thus, for the case d = 2 and a resonance µm = 1, the transformation does not exist for the
z′i component when

i = 1 : nm1 = j1 − ̄1 − 1, nm2 = j2 − ̄2 ,
i = 2 : nm1 = j1 − ̄1, nm2 = j2 − ̄2 − 1 ,

(26)

with some nonzero integer n.
For certain terms this will give m1 = m2 = 0, in which case the corresponding term can

never be removed by a coordinate transformation. The coefficients of these irremovable terms
are called the twists. In the present case up to degree 3 they are given by z1, z1(z1z̄1), z1(z2z̄2)
for the z′1 equation and by z2, z2(z1z̄1), z2(z2z̄2) for the z′2 equation. The transformation to
normal form has to remove all the quadratic terms (if non-resonant). There are 10 of them,
so the transformation has 10 corresponding terms to remove them. Assuming that all the
other terms of degree three can be removed (i.e. assuming there is no resonance up to
including order 4) the map takes the form

ζ ′k = µkζk

(
1 + iπsk

d∑
j=1

τkj|ζj|2
)

(27)

plus terms of degree 4 or higher in ζ.
Introducing action-angle variables (J, θ) by ζk =

√
2Jke

iskθk gives the standard form of a
twist map

J ′
k = Jk

θ′k = θk + 2π

(
skωk +

d∑
j=1

τkjJj

)
,

(28)

plus terms of degree 2 or higher in J and periodic in θ. The twist matrix is symmetric
because the map is symplectic.
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The three entries of the symmetric twist-matrix τjk for the cubic map are given by

τ11 =
1

64πR1D201

(
9a2

30s1
5− 8R1

R1D301

+ a2
21s2

N12

R2D210

)
,

τ22 =
1

64πR2D021

(
9a2

03s2
5− 8R2

R2D031

+ a2
12s1

N21

R1D120

)
,

τ12 =
1

16π
√

R1R2D201D021

(
a2

21s1
N1

D210

+ a2
12s2

N2

D120

− a12a30s1
3

2R1

− a21a03s2
3

2R2

)
,

(29)

where the resonance denominators are given in (15) and the numerators by

Njk = 8Rj(1−Rj)− 3Rk ,

Nk = 1− 2Rk .

It is of course no accident that the resonance polynomials appear as the denominators of the
corresponding resonant terms.

The relation between the exponents jk, ̄k, the resonances m and the resonance curves in
residue space (recall Fig. 6) is interesting. On the one hand starting with given exponents,
there can be more than one (but finitely many) resonances corresponding to them. Whether
the resonance is important depends of course on its amplitude. On the other hand a given
resonance curve accounts for a number of resonances and an infinite number of corresponding
exponents.

The truncated nonresonant normal form has the two actions Jk = ζkζ̄k/2 as integrals.
Transforming back to the original coordinates x and y gives cubic approximations for the
integrals

1

2
f 2

1 J1 = 4R1x1(x1 − s1y1) + y2
1 −

3s1a30

D301

x1(2x1 − s1y1)(x1 − s1y1)

− s1a21

D210

(
2R1(2x2 − s2y2)x

2
1 − s1(4R1x2 − s2y2)x1y1 + (2R1 − 1)x2y

2
1

)
+

s1a12

D120

(
(R1 − 2R2)(2x1 − s1y1)x

2
2 + s2 (2(2R2 −R1)x1 − s1(2R2 − 1)y1) x2y2

+ (R1 − 1)x1y
2
2

)
+ O(4) .

(30)

The first line contains the expression from a cubic, two-dimensional map while the remaining
lines give the result of the coupling terms proportional to a21 and a12 (the term a03 does not
enter to this order). The analogous equation for J2 is obtained by exchanging the indices 1
and 2 and also 0 and 3.

5 Fold Singularities Near an Elliptic Fixed Point

The twist coefficients of the Birkhoff normal form can be used to find singularities of the
frequency map. When det τ0 is zero, there is a singularity at the fixed point that we call a
twistless bifurcation. Since we are not able to determine whether this bifurcation is a fold
or a cusp without calculating τ1, we will focus on the fold case. We show in this section that
a fold singularity necessarily occurs in one-parameter families of maps, if the family crosses
a tripling resonance line in a certain way.
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5.1 Twistless Curves

As we discussed in §2.3, the type of twistless bifurcation obtained when a fold crosses the
origin depends upon whether the columns of τ0 are parallel or antiparallel. To visualize
this, consider the two direction fields given by the normalized column vectors of τ0. We
show these fields in Fig. 9 for two sets of values for the nonlinear parameters aij; since the
components of τ0 are homogeneous quadratic polynomials in these parameters, their overall
scale is unimportant and there are only three independent parameters that determine this
direction field in residue space. Thus we can specify only the ratios of the values of the aij

to define the picture. In the figure, the first column vector of τ0 corresponds to the black
vectors and the second to the gray vectors.
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Figure 9: Unit vector fields given by the columns of τ0 as a function of the residues. The black and gray
arrows represent the image of the J1 and J2-axes respectively. We set s1 = s2, for the left panel we choose
a30 = a21 = a12 = a03 and for the right panel a30 = a21 = −2a12 = −2a03. Resonance curves up to order
three are also shown. When the columns are parallel or antiparallel det τ0 vanishes.

Notice that the twist vectors in the figure appear to be either nearly aligned or antialigned
over a large region near R1 = R2 ≈ 0.5, but that their behavior varies rapidly near the
resonance lines. Since det τ0 = 0 is a single condition, we expect it to vanish on curves in
the residue space. It is easy to obtain these curves numerically using a contour plotting
algorithm; the plots are more easily constructed if we compute the numerator of the rational
expression for det τ0 from (29) and set it to zero, since this eliminates infinities which are
unimportant in drawing the zeros. We show examples of these curves in Fig. 10 for the same
parameter values as Fig. 9.

In general the expression for the twistless bifurcation curves in parameter space are quite
complicated. However, the poles in det τ0 that occur at low-order resonances are helpful in
understanding the behavior, just as they were helpful in the two-dimensional case [3]. We
will first obtain an elementary lemma about these poles, and then use it to prove a theorem
about the necessity of twistless bifurcations in certain one-parameter families.
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Figure 10: Resonance curves of orders 1, 2, and 3, and zeros of det τ0 (dashed curves) in the residue space.
Parameters are the same as Fig. 9. The dots indicate places where a column of τ0 vanishes.

Lemma 1. If all of the quadratic coefficients of the polynomial map (21) do not vanish,
then the determinant of its twist has poles of order three at the (100) and (010) resonances,
poles of order two at the (210) and (120) resonances and poles of order one at the (201),
(021),(301) and (031) resonances. The coefficients of the second and third order poles are
always negative.

Proof. A straightforward expansion of det τ0 near the (100) and (210) resonances gives

det τ0 ∼ − 1

R3
1

3

2048π2

(a30a12)
2

R2(1−R2)
+ O(R−2

1 ) ,

det τ0 ∼ − 1

D2
210

1

1024π2

(
a2

21

R1(1−R1)

)2

+ O(D−1
210) .

This gives the promised results for these resonances, since the denominators R1 and D210 have
first order zeros on the resonance curves. The expressions for the (010) and (120) resonances
are obtained by exchanging coefficients 0 ↔ 3 and 1 ↔ 2 as usual. A similar calculation
gives the expressions for the coefficients of the first order poles; these are complicated and
not especially useful, so we do not give them explicitly.

Since the second order poles have negative coefficients, twistless bifurcations are forced
by the first order pole at the (301) and (031) resonances. However, which side of these
resonance curves has the twistless curve depends upon the sign of the coefficient of the pole.
Nevertheless we can conclude that there must be twistless bifurcations “near” the (301) and
(310) resonances:

Theorem 2. Suppose the map (21) has all of its quadratic coefficients aij nonzero. Let P be
a path in residue space whose endpoints are on the (210) or (120) resonance curves and which
transversely crosses either the (310) or (301) curve exactly once. Then there is a twistless
bifurcation at some point on P.
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Proof. Since P begins and ends on resonance curves where det τ0 has a negative second
order pole, then det τ0 < 0 on P for points sufficiently close to its endpoints. Since there are
poles of order 1 at the (310) and (031) resonances, it is necessary that det τ0 > 0 when P
approaches one side of these resonance curves. Thus det τ0 crosses zero on P .

In Fig. 10, the twistless bifurcation that is forced by this mechanism is the curve that lies
between the (301) line and the (210) parabola for small R2, then crosses the (301) resonance
near R2 = 0.6, finally ending up between the (031) and (120) curves for small R1. There may
be other points where the twist vanishes as well—indeed in the figure several such curves
occur—but the regions where they occur depend in detail on the parameter values as can be
seen by comparing the two cases shown in the Fig. 10.

Note that since the (210) resonance curve transversely crosses the (031) curve at the
point R = (1

4
, 3

4
), corresponding to the frequencies ω = (1

6
, 1

3
), the corollary implies that

any small circle enclosing this point must contain at least two twistless points. Thus there
must be a curve of twistless parameter values that goes through this double resonance. By
symmetry, this is also true at the point R = (3

4
, 1

4
). We will investigate the structure of the

frequency maps near this point below. A similar argument cannot be given for R = (3
4
, 3

4
),

since here the four low-order resonance curves (210), (120) (310) and (130) all cross in such
a way that small loops encircling this point do not cross the curves in the correct order to
force twistless points.

As we move along a twistless curve in parameter space, it is possible for the twistless
bifurcation to change from one of parallel type to one of antiparallel type. This can only
occur when a column of the twist matrix vanishes, since the column vectors correspond to
the tangent vectors of the images of the J axes (recall Fig. 1). Since vanishing of a column
of τ requires two conditions, we expect this to occur at isolated points in the residue space:
it is a codimension-two bifurcation. In Fig. 10 this occurs, for example, near the crossing of
the (210) and (120) curves, corresponding to the double-resonance ω = (1

5
, 2

5
). We show an

enlargement of the left panel of Fig. 10 in Fig. 11. To show that a column of τ0 vanishes
along the twistless curves, we also plot the zero level sets of the three entries of the twist
matrix in Fig. 11. There are two points on which a column of τ vanishes in this figure; the
first column vanishes at R ≈ (0.3536, 0.8874) and the second at R ≈ (0.3478, 0.8965). Along
the lower twistless curve in Fig. 11, the bifurcation is of antiparallel type to the right of
the codimension-two point, and parallel to its left. All of the codimension-two points are
indicated by the dots in Fig. 10.

All of the twistless curves in Fig. 10 correspond to the vanishing of a single eigenvalue of τ0.
In order that both eigenvalues of the symmetric twist matrix vanish, all three of the elements
(29) must vanish simultaneously; thus this is a codimension-three phenomenon. We could
achieve this by choice of one of the nonlinear terms in addition to the two residues. An easy
place to search for this phenomenon is close to the two neighboring codimension-two points
corresponding to vanishing of each column of τ0, e.g., near R = (0.35, 0.89) in Fig. 11). For
example, if we allow a30 to vary from our standard choice of equal parameters, we find that
the matrix τ0 vanishes identically when R ≈ (0.34841, 0.89633) and a30 = 1.52663a21. This
corresponds to a simultaneous “crossing” of the three curves of zero twist matrix entries; this
is not a persistent crossing—it corresponds to the vertex of the cone defined by the vanishing
of the determinant of a symmetric matrix.
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Figure 11: Enlargement of the left panel of Fig. 10 near the crossing of the (210) and (120) resonance
curves (thick lines). The twistless curves (dashed) show a loop extending from this crossing point that was
not visible in the previous figure. Also shown are the curves (dotted) along which individual components of
the twist matrix vanish and dots at the codimension-two points.

5.2 Frequency Maps

In this section we will obtain some frequency maps for (21) using Laskar’s method [21].
The basic idea is to approximately compute the frequencies for a particular initial condition
by iterating for some fixed, finite time and extracting the frequencies in the resulting time
series by computing their dominant spectral peaks. The frequency map can be computed by
choosing a two-dimensional grid of initial conditions on a surface of fixed angles, by varying
the actions. If each trajectory actually lies on an invariant torus, then this gives a numerical
representation of the frequency map to the extent that a finite time series can be used to
compute the frequencies. Of course there will be many chaotic trajectories, and for these
the frequencies are not well-defined. Chaotic trajectories typically result in the frequencies
not converging as the number of iterations is increased, and visually result in wild behavior
of the frequency map.

Specifically, we iterate a grid of initial conditions using the quadratic approximation to
the actions, i.e., the first two terms in (30). We arbitrarily fix the conjugate angles to 0
and take a grid of initial conditions in these (approximate) actions. For each point the
corresponding coordinates (x, y) are calculated and then the orbit is iterated 2N+1 times
and the frequencies are calculated using a weighted Fourier transformation. As a weight
function we use 1+cos πt/(N +1), where t ∈ [−N, N ], the so-called Hann window. We take
the sum over the four coordinates as the signal vt from the orbit. The Fourier transform is
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defined by

F(v; Ω) =
1

2(N + 1)

N∑
t=−N

e2πiΩt

(
1 + cos

πt

N + 1

)
vt .

The maximum of the modulus of F(v; Ω) as a function of Ω determines the first frequency,
Ω1. Note that we cannot use an FFT for this because we need very high accuracy in Ω1.
To find the second frequency, Ω2, we remove the first frequency from the signal by forming
wt = vt − e−2πiΩ1tF(v; Ω1). Then F(w; Ω2) is maximized. Frequencies are only defined up
to unimodular transformations. When changing the parameters it is therefore possible that
the largest peak appears at a different linear combination. To avoid such discontinuities in
the frequency map we use a continuation method that tries to find local maxima near the
previously found maxima.

In Fig. 12 parameters are chosen for the two panels on opposite sides of the det τ0 = 0
curve. Here the left panel shows that the twist columns are nearly antiparallel, and in the
right panel, a fold singularity appears. Evidently, the slope of the singular curve is negative,
so that the fold is created at the twistless bifurcation, recall Fig. 5. Note that there are
resonances that cross the frequency map, as indicated by its oscillations. Also chaotic orbits
result in the breakup of the grid as the actions reach the outer boundary of the island.
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Figure 12: Frequency Map near the twistless curve for aij = 0.1 and s1s2 = 1. In the left panel (R1, R2) =
(0.80, 0.56) so that ω = (0.3524, 0.2691). The twist is τ0 = 1

100π

[
(−6.82, 1.13)T , (1.13,−.514)T

]
, which

is orientation preserving. In the right panel the first residue is now R1 = 0.82 so that ω1 = .3605 and
τ0 = 1

100π

[
(−3.37, 5.66)T , (5.66,−0.469)T

]
which is orientation reversing. In both figures the image of the

J1-axis intersects the Ω2-axis.

In Fig. 13 parameters are chosen on opposite sides of the twistless bifurcation curve for
the parallel case. A fold singularity is present in the left panel, and it disappears on the
right. Evidently, the slope of the singular curve is negative, so that the fold is created at the
twistless bifurcation, recall Fig. 2. However, in the right panel, there appears to be another
singularity in the frequency map in the interior of the image of the positive quadrant, perhaps
indicating that there is a nearby cusp in this case.

The behavior of this case becomes even more exotic upon a further increase of R1, as
shown in Fig. 14. For small values of the actions, the narrow wedge of the image of the
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Figure 13: Frequency Maps near a twistless curve for aij = 0.1 and s1s2 = 1. In the left panel (R1, R2) =
(0.626, 0.13) so that ω = (0.2905, 0.1174). The twist matrix is τ0 = 1

100π

[
(−0.929,−3.59)T , (−3.59,−16.5)T

]
,

so det τ0 > 0. In the right panel the first residue is now R1 = 0.636 so that ω1 = 0.2938, and τ0 =
1

100π

[
(−0.769,−3.68)T , (−3.68,−16.5)T

]
which is now orientation reversing. Because the twist vectors are

so nearly parallel we have applied a shear transformation to the figures to make the sector more visible, thus
the units of the horizontal axis are arbitrary. In the left figure the image of the J1-axis is on the left, while
in the right figure it is on the right.

positive quadrant is clearly visible, but for moderate actions, the image appears to undergo
several spirals. The images of the J1 and J2 axes are particularly difficult to compute using
the iterative method; in particular the frequency map is more sensitive to the number of
iterates used in this case then when both actions are nonzero. This is reflected in the rapid
change in the frequencies in the figure when J2 in particular is increased from zero.

6 Conclusions

We have shown that twistless bifurcations occur in one parameter families of symplectic
maps when the elliptic fixed point is near a tripling resonance, where ωi = 1/3. The simplest
such bifurcation corresponds to the fold singularity; it leads to the reversal of the orientation
of the frequency map and a domain on which the map is two-to-one.

A fold singularity at an elliptic fixed point is manifested in one of several ways depending
upon whether the columns of the twist matrix are parallel or antiparallel and whether the
slope of the singular curve is positive or negative. We have calculated the twist for a quadratic
example and shown that it predicts where this phenomenon is observed in computations of
the frequency map from iterative data. Though our twist formulae apply for the case of
mixed Krein signatures, we have not investigated the effect of these on the dynamics.

Since the two-dimensional twistless bifurcation creates a twistless invariant circle and re-
connection bifurcations, we can expect that similar phenomena occur in the four-dimensional
case. We are currently investigating these.

It would also be interesting to investigate the occurrence of cusp singularities, which
would require knowing the twist through first order in the action variables. Since the lo-
cal frequency map in the neighborhood of a cusp is three-to-one, it should be possible for
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Figure 14: Frequency Map for for aij = 0.1 and s1s2 = 1, and (R1, R2) = (0.640, 0.13) so that ω =
(0.2952, 0.1174). The twist matrix is τ0 = 1

100π

[
(−0.698,−3.71)T , (−3.71,−16.4)T

]
, so det τ0 < 0. As in

Fig. 13 the horizontal axis has been sheared and has arbitrary units. The image of the J1-axis is eventually
on the right.

reconnection bifurcations to occur between three resonances with the same frequency vec-
tor. The dynamical effect of this on neighboring invariant tori should be as dramatic as the
meandering invariant curves that occur near a reconnection in two dimensions.

7 Appendix: Moser’s Normal Form for Quadratic Maps

Moser [29, 33] showed that any four-dimensional, quadratic, symplectic map can be trans-
formed by an affine coordinate change into a normal form with six parameters and two
indices. This map is generated by the Lagrangian

L̃(x, x′) = −x′T Cx− U(x) ,

where U(x) = a1x1+a2x2+ 1
2
bx2

1+x1(ε
′x2

1+x2
2), and C is a 2×2 matrix such that det(C) = ε.

The six parameters are the three elements of C and a1, a2, b; the indices are ε = ±1, and
ε′ = 0,±1. Geometrically, ε corresponds to the product of the Krein signatures, and ε′ to
the discriminant of the cubic terms.

When the matrix C is symmetric, Moser’s normal form can be transformed to the stan-
dard form (16) with the symplectic coordinate change (x, y) → (x̂, ŷ) generated by

F (x, x̂) = xT Cx̂ +
1

2
x̂T Cx̂ + U(x̂) .

This gives a map generated by a Lagrangian of the form (16), where the kinetic energy is
K(v) = vtCv/2 and potential V (x) = xT Cx + U(x). If in addition, the map has a fixed
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point, we can shift coordinates so that the fixed point is at the origin. In this case, the linear
terms in V become zero.

It is interesting that ε′, the discriminant of the cubic part of U is also the discriminant
of V . The other sign, corresponding to the determinant of C is equivalent to the product of
the signatures, ε = s1s2.

Finally, if there is a linear transformation that simultaneously diagonalizes the kinetic
energy and the quadratic part of V , then this transformation can be used to put the map in
our form (21). A sufficient condition for simultaneous diagonalization is that K is definite,
so that ε = 1.

If the Krein signatures are not equal, the simultaneous diagonalization is not always
possible. It still can be done, however, if one of the matrices is “diagonally dominant.”
If not we need a general symplectic transformation instead of just a point transformation
to diagonalize the quadratic terms. This more general transformation will mix coordinates
and momenta, and therefore will destroy the simple structure “kinetic plus potential” of the
generating function.

We conclude that our map is equivalent to the general case when there is a strongly-stable
fixed point, and when C is symmetric and the simultaneous diagonalization can be done.
This certainly includes the case of a “natural” map.
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(3, 1)T , (1, 0.5)T

]
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[
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]
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panel τ =
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and the caustic is not visible. For the right panel τ =[

(−0.2, 1)T , (1,−0.5)T
]

has negative determinant and a fold is present. . . . . . . . . . 8
6 Resonances curves up to order 4 (left panel) and order 9 (right panel) in the space of residues. 11
7 Estimated size of the island of quasiperiodic motion around the elliptic fixed point of the

cubic natural map as a function of the residues using the area of trapped orbits on the
symmetry plane. We choose s1 = s2, and for the left panel set aij = 0.1 while for the right
a30 = a21 = 0. The trapped area is indicated with the hue on the color wheel, with red (0◦)
corresponding to the smallest island, through green to blue to magenta (359◦) as the largest. 14

8 Estimated volume of bounded orbits in the island of quasiperiodic motion around the elliptic
fixed point of the cubic natural map as a function of the residues using the average exit
time. Parameters are the same as in Fig. 7. . . . . . . . . . . . . . . . . . . . . . . 15

9 Unit vector fields given by the columns of τ0 as a function of the residues. The black and gray
arrows represent the image of the J1 and J2-axes respectively. We set s1 = s2, for the left
panel we choose a30 = a21 = a12 = a03 and for the right panel a30 = a21 = −2a12 = −2a03.
Resonance curves up to order three are also shown. When the columns are parallel or
antiparallel det τ0 vanishes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

10 Resonance curves of orders 1, 2, and 3, and zeros of det τ0 (dashed curves) in the residue
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11 Enlargement of the left panel of Fig. 10 near the crossing of the (210) and (120) resonance
curves (thick lines). The twistless curves (dashed) show a loop extending from this crossing
point that was not visible in the previous figure. Also shown are the curves (dotted) along
which individual components of the twist matrix vanish and dots at the codimension-two
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

12 Frequency Map near the twistless curve for aij = 0.1 and s1s2 = 1. In the left panel
(R1, R2) = (0.80, 0.56) so that ω = (0.3524, 0.2691). The twist is τ0 = 1

100π

[
(−6.82, 1.13)T , (1.13,−.514)T

]
,

which is orientation preserving. In the right panel the first residue is now R1 = 0.82 so that
ω1 = .3605 and τ0 = 1

100π

[
(−3.37, 5.66)T , (5.66,−0.469)T

]
which is orientation reversing.

In both figures the image of the J1-axis intersects the Ω2-axis. . . . . . . . . . . . . . 22
13 Frequency Maps near a twistless curve for aij = 0.1 and s1s2 = 1. In the left panel

(R1, R2) = (0.626, 0.13) so that ω = (0.2905, 0.1174). The twist matrix is τ0 = 1
100π

[
(−0.929,−3.59)T , (−3.59,−16.5)T

]
,

so det τ0 > 0. In the right panel the first residue is now R1 = 0.636 so that ω1 = 0.2938, and
τ0 = 1

100π

[
(−0.769,−3.68)T , (−3.68,−16.5)T

]
which is now orientation reversing. Because

the twist vectors are so nearly parallel we have applied a shear transformation to the figures
to make the sector more visible, thus the units of the horizontal axis are arbitrary. In the
left figure the image of the J1-axis is on the left, while in the right figure it is on the right. 23

14 Frequency Map for for aij = 0.1 and s1s2 = 1, and (R1, R2) = (0.640, 0.13) so that
ω = (0.2952, 0.1174). The twist matrix is τ0 = 1

100π

[
(−0.698,−3.71)T , (−3.71,−16.4)T

]
, so
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