Building on the Legacy of John Greene: The Transition to Chaos in **Volume-Preserving Maps** J. D. Meiss

University of Colorado at Boulder

John M. Greene 1928-2007

"You are trying to solve the inverse scattering problem" "Oh, that!"

1950 BS Cal Tech1956 PhD Univ. of Rochester1955-1982 PPPL1982-1995 General Atomics

1992 APS Maxwell Prize 2006 AMS Steele Prize

MHD Instabilities BGK Modes Inverse Scattering Greene's Residue Criterion MHD Hamiltonian Theory Magnetic Nulls

John M. Greene 1928-2007

"You are trying to solve the inverse scattering problem" "Oh, that!"

1950 BS Cal Tech1956 PhD Univ. of Rochester1955-1982 PPPL1982-1995 General Atomics

1992 APS Maxwell Prize 2006 AMS Steele Prize

The Residue Criterion

Astonishing discovery

Stability of quasiperiodic orbits (irrational rotational transform) determined by limiting stability of periodic orbits

Greene, J. M. (1968). "Two-Dimensional Area Preserving Mappings." J. Math Physics **9**: 760-768. Greene, J. M. (1979). "A Method for Computing the Stochastic Transition." J. Math. Physics **20**: 1183-1201. Greene, J. M. (1980). The Calculation of KAM Surfaces. <u>Nonlinear Dynamics</u>. Ann. New York Acad.**357**: 80-89. Area Preserving Map $(x',y') = (x+y',y-\frac{k}{2\pi}\sin(2\pi x))$ Stability of Periodic Orbits $Df^{n} = \frac{\partial(x_{n}, y_{n})}{\partial(x_{0}, y_{0})} \quad \Rightarrow \lambda_{1}, \lambda_{2}$ $det(\lambda I - Df^n) = \lambda^2 - \tau \lambda + 1, \quad \tau = Tr(Df^n)$ Residue $R = \frac{1}{4} \left(2 - Tr(Df^n) \right)$

> R<0: Hyperbolic 0<R<1: Elliptic R>1: Reflection Hyperbolic

sequence of periodic orbits, rotation numbers $\frac{m_i}{n_i} \rightarrow \gamma$ Use Continued fractions... bounded Residue implies existence

of invariant circle

Sequence of periodic orbits, rotation numbers ^{m_i}/_{n_i} → γ Use Continued fractions... Sounded Residue implies existence

of invariant circle

Sequence of periodic orbits, rotation numbers ^{m_i}/_{n_i} → γ Use Continued fractions... Sounded Residue implies existence

of invariant circle

Sequence of periodic orbits, rotation numbers ^{m_i}/_{n_i} → γ Use Continued fractions... Sounded Residue implies existence of invariant circle

Last Invariant Circle: γ = Golden Mean! Much has been Proved:

- MacKay, R. S. (1992). "On Greene's Residue Criterion." Nonlinearity 5(1): 161-187.
- Delshams, A. and R. de la Llave (2000). "KAM Theory and a Partial Justification of Greene's Criterion for Nontwist Maps." SIAM J. Math. Anal. 31(6): 1235-1269.

Sequence of periodic orbits, rotation numbers ^{m_i}/_{n_i} → γ Use Continued fractions... Sounded Residue implies existence of invariant circle

Last Invariant Circle:

γ = Golden Mean!

Self-Similarity ⇒ Renormalization see R.S. MacKay (1993) <u>Renormalisation in Area-Preserving Maps</u>

Generalize to Symplectic Twist Maps? $\vec{x}' = \vec{x} + \vec{y}'$ $\vec{y}' = \vec{y} - \nabla V(\vec{x})$ $\exists (\vec{m}, n)$ Periodic Orbits

- Kook, H. T. and J. D. Meiss (1989). "Periodic-Orbits for Reversible, Symplectic Mappings." Physica D 35(1-2): 65-86.
- ∃ Tori and a last torus: "KAM" and "Converse KAM"
 - MacKay, R. S., J. D. Meiss and J. Stark (1989). "Converse KAM Theory for Symplectic Twist Maps." Nonlinearity 2: 555-570.
- Gantori: "Anti-Integrable Limit"
 - MacKay, R. S. and J. D. Meiss (1992). "Cantori for Symplectic Maps near the Anti-Integrable Limit." Nonlinearity 5: 149-160.
- \exists ? Residue Criterion: Symplectic \Rightarrow Reflexive

$$\lambda^4 - \tau \lambda^3 + \sigma \lambda^2 - \tau \lambda + 1 \quad R_{1,2} = \frac{1}{4} \left(2 - \lambda_i - \frac{1}{\lambda_i} \right)$$

Tompaidis, S. (1999). Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps. <u>Hamiltonian Systems with Three or More Degrees of Freedom (S'agaro, 1995)</u>.

- Kook, H. T. and J. D. Meiss (1989). "Periodic-Orbits for Reversible, Symplectic Mappings." Physica D 35(1-2): 65-86.
- I Tori and a last torus: "KAM" and "Converse KAM"
- MacKay Nonline
 But what is the generalization of the golden mean?
 Can^a (No satisfactory generalization of MacKay Nonlinearity 5: 149-160.
- \exists ? Residue Criterion: Symplectic \Rightarrow Reflexive

$$\lambda^4 - \tau \lambda^3 + \sigma \lambda^2 - \tau \lambda + 1 \quad R_{1,2} = \frac{1}{4} \left(2 - \lambda_i - \frac{1}{\lambda_i} \right)$$

Tompaidis, S. (1999). Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps. <u>Hamiltonian Systems with Three or More Degrees of Freedom (S'agaro, 1995)</u>.

Generalize to Symplectic Twist Maps? $\vec{x}' = \vec{x} + \vec{y}'$ $\vec{y}' = \vec{y} - \nabla V(\vec{x})$ $\exists (\vec{m}, n)$ Periodic Orbits

- Kook, H. T. and J. D. Meiss (1989). "Periodic-Orbits for Reversible, Symplectic Mappings." Physica D 35(1-2): 65-86.
- ∃ Tori and a last torus: "KAM" and "Converse KAM"
 - MacKay, R. S., J. D. Meiss and J. Stark (1989). "Converse KAM Theory for Symplectic Twist Maps." Nonlinearity 2: 555-570.
- Gantori: "Anti-Integrable Limit"
 - MacKay, R. S. and J. D. Meiss (1992). "Cantori for Symplectic Maps near the Anti-Integrable Limit." Nonlinearity 5: 149-160.
- \exists ? Residue Criterion: Symplectic \Rightarrow Reflexive

$$\lambda^4 - \tau \lambda^3 + \sigma \lambda^2 - \tau \lambda + 1 \quad R_{1,2} = \frac{1}{4} \left(2 - \lambda_i - \frac{1}{\lambda_i} \right)$$

Tompaidis, S. (1999). Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps. <u>Hamiltonian Systems with Three or More Degrees of Freedom (S'agaro, 1995)</u>.

Generalize to Symplectic Twist Maps? $\vec{x}' = \vec{x} + \vec{y}'$ $\vec{y}' = \vec{y} - \nabla V(\vec{x})$ $\exists (\vec{m}, n)$ Periodic Orbits

- Kook, H. T. and J. D. Meiss (1989). "Periodic-Orbits for Reversible, Symplectic Mappings." Physica D 35(1-2): 65-86.
- ∃ Tori and a last torus: "KAM" and "Converse KAM"
 - MacKay, R. S., J. D. Meiss and J. Stark (1989). "Converse KAM Theory for Symplectic Twist Maps." Nonlinearity 2: 555-570.
- Section Sec

 λ^4

Tompai

Maps. <u>H</u>

9

- MacKay, R. S. and J. D. Meiss (1992). "Cantori for Symplectic Maps near the Anti-Integrable Limit." Nonlinearity 5: 149-160.
- \exists ? Residue Criterion: Symplectic \Rightarrow Reflexive

But are there critical residues or multiple pathways to destruction?

)imensional

Volume Preserving Maps

Magnetic Field line flows $\frac{dx}{dt} = B(x,t) \quad \nabla \cdot B = 0$ Incompressible Fluids $\frac{dx}{dt} = v(x,t) \quad \nabla \cdot v = 0$

Poincaré Map for Periodic Time dependence: V.P.

ABC Map

 $x' = x + a\sin(2\pi z) + c\cos(2\pi y)$ $y' = y + b\sin(2\pi x') + a\cos(2\pi z)$ $z' = z + c\sin(2\pi y') + b\cos(2\pi x')$

a = b = c = 0.1

InvariantTori Transport & Chaos Rotation numbers ω_L, ω_T (Hmm...) Limits of Periodic Orbits ??

a = b = c = 0.1

A Residue Criterion?

- KAM theory applies (Cheng & Sun)
 However, can't fix the frequencies!
 Is there a last torus? Self-Similarity?
 What rotation vector plays the role of the golden mean?
 - Perhaps the spiral mean $\sigma^3 = \sigma + 1$?
- Are there cantori?
 - Anti-integrable theory by Li & Malkin

Stability

Characteristic Polynomial has two parameters $\lambda^3 - \tau \lambda^2 + \sigma \lambda - 1 = 0$ $\tau = Tr(Df)$ $\sigma = \frac{1}{2}(\tau^2 - Tr(Df^2))$ $1 \leq \lambda_1 = \lambda_2$ $\lambda_1 = \lambda_2 \leq -1$ σ Deriod doubling XI. 5 -5 5 τ 10 -10 saddle node -5 $1 \le \lambda_1 = \lambda_2 < 0$

Stability

• Characteristic Polynomial has two parameters $\lambda^3 - \tau \lambda^2 + \sigma \lambda - 1 = 0$ $\tau = Tr(Df)$ $\sigma = \frac{1}{2}(\tau^2 - Tr(Df^2))$

Stable Tori would be here: Saddle-Center-Hopf Line

Stability

Quadratic VP Map Normal form for (1,1,1) bifurcation Generalizes Hénon's 2D Map $f(x, y, z) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z + p(x, y) \end{pmatrix}$ $p(x,y) = -\varepsilon + \mu y + ax^2 + bxy + cy^2$ Hydrogen-Atom Model for 3D dynamics

Saddle-Center-Hopf

- Two fixed points: typically one type-A (2,1) and one type-B (1,2). (e.g. Greene's Magnetic Nulls)
- 2D stable and unstable manifolds intersect forming a "sphere"
- Inside of sphere
 foliated (ε << 1) by
 invariant tori
- Spheromak is generic!

Dullin & Meiss 2008

Vortex Rings

Elliptical Vortex Ring T.T. Lim (Singapore)

T. T. Lim & D. Adhikari Reportment of Mechanical Engineering, National University of Engineering

http://serve.me.nus.edu.sg/limtt/#Video_Gallery

Circle Bifurcations

 Elliptic invariant circle has longitudinal & transverse frequencies

Bifurcations may occur when

 $m_1\omega_L + m_2\omega_T = k$, $m_1, m_2, k \in \mathbb{Z}$

Circle Bifurcations Circles created in Saddle-Center-Hopf Bifurcation at ε = 0

 $(7,1,2) \\ (3,4,1) \\ (3,3,1) \\ (10,3,3) \\ (46-2,13) \\ (7,0,2)$

Resonances

 $\mu = -2.4$

 $(7,1,2) \epsilon = 0.052$ $(3,5,1) \epsilon = 0.1$ $(4,-3,1) \epsilon = 0.21$

Three types $m.\omega = k$

(2, 5, 1)

• (m₁,m₂) coprime

torus knots

(m₁,m₂) reducible
 torus links

• ω_L rational: $(m,k)=(m_1,0,k)$ • "Pearls on a String"

(1,2,0) Resonance: Torus Knot

(4,2,1) Resonance: Torus Link

(3,-2,1) Resonance: Torus Knot

3: Pearls on a String

• Rational ω_L (m₂ = 0), the circle mode locks into a pair of periodic orbits

• Generically one is type-A and one is type-B (2,0,1) (4,0,1)

 $\mu = -1.383$

(5,0,1) Pearls

Much still to do...

Self-Similarity?

How to tori breakup?

Last Torus?

Thanks!

Differential Dynamical Systems

James D. Meiss

Mathematical Modeling and Computation

and buy my book!