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The Residue Criterion
Astonishing discovery

Stability of quasiperiodic orbits 
(irrational rotational transform) 

determined by limiting stability of 
periodic orbits

Greene, J. M. (1968). “Two-Dimensional Area Preserving Mappings.” J. Math Physics 9: 760-768.
Greene, J. M. (1979). “A Method for Computing the Stochastic Transition.” J. Math. Physics 20: 1183-1201.
Greene, J. M. (1980). The Calculation of KAM Surfaces. Nonlinear Dynamics. Ann. New York Acad.357: 80-89.



Area Preserving Map

Stability of Periodic Orbits

Residue

(x′, y′) = (x + y′, y − k

2π
sin(2πx))

R<0: Hyperbolic
0<R<1: Elliptic
R>1: Reflection Hyperbolic

det(λI −Dfn) = λ2 − τλ + 1 , τ = Tr(Dfn)

R =
1
4

(2− Tr(Dfn))

Dfn =
∂(xn, yn)
∂(x0, y0)

⇒ λ1, λ2



sequence of periodic orbits, rotation 
numbers

bounded Residue implies existence 
of invariant circle
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sequence of periodic orbits, rotation 
numbers

bounded Residue implies existence 
of invariant circle

Last Invariant Circle: 

      ! = Golden Mean!

Much has been Proved:
MacKay, R. S. (1992). “On Greene’s Residue Criterion.” Nonlinearity 5(1): 161-187.

Delshams, A. and R. de la Llave (2000). “KAM Theory and a Partial Justification of 
Greene’s Criterion for Nontwist Maps.” SIAM J. Math. Anal. 31(6): 1235-1269.
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Cantori

k=1.05

k=kcr







Self-Similarity ! Renormalization

see R.S. MacKay (1993) 
Renormalisation in Area-Preserving Maps



Generalize to Symplectic Twist Maps?

" (m,n) Periodic Orbits

Kook, H. T. and J. D. Meiss (1989). “Periodic-Orbits for Reversible, Symplectic Mappings.” Physica D 
35(1-2): 65-86.

" Tori and a last torus: “KAM” and “Converse KAM” 

MacKay, R. S., J. D. Meiss and J. Stark (1989). “Converse KAM Theory for Symplectic Twist Maps.” 
Nonlinearity 2: 555-570.

" Cantori: “Anti-Integrable Limit”

MacKay, R. S. and J. D. Meiss (1992). “Cantori for Symplectic Maps near the Anti-Integrable Limit.” 
Nonlinearity 5: 149-160.

"? Residue Criterion: Symplectic ! Reflexive

Tompaidis, S. (1999). Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional 
Maps. Hamiltonian Systems with Three or More Degrees of Freedom (S'agaro, 1995).

Froeshlé Map

λ4 − τλ3 + σλ2 − τλ + 1 R1,2 =
1
4

(
2− λi −

1
λi

)

!

!x ′ = !x + !y ′

!y ′ = !y −∇V (!x)



Generalize to Symplectic Twist Maps?

" (m,n) Periodic Orbits

Kook, H. T. and J. D. Meiss (1989). “Periodic-Orbits for Reversible, Symplectic Mappings.” Physica D 
35(1-2): 65-86.

" Tori and a last torus: “KAM” and “Converse KAM” 

MacKay, R. S., J. D. Meiss and J. Stark (1989). “Converse KAM Theory for Symplectic Twist Maps.” 
Nonlinearity 2: 555-570.

" Cantori: “Anti-Integrable Limit”

MacKay, R. S. and J. D. Meiss (1992). “Cantori for Symplectic Maps near the Anti-Integrable Limit.” 
Nonlinearity 5: 149-160.

"? Residue Criterion: Symplectic ! Reflexive

Tompaidis, S. (1999). Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional 
Maps. Hamiltonian Systems with Three or More Degrees of Freedom (S'agaro, 1995).

Froeshlé Map

λ4 − τλ3 + σλ2 − τλ + 1 R1,2 =
1
4

(
2− λi −

1
λi

)

But what is the generalization of the 
golden mean?

(No satisfactory generalization of 
continued fractions)
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But are there critical residues or 
multiple pathways to destruction?

!

!x ′ = !x + !y ′

!y ′ = !y −∇V (!x)



Magnetic Field line flows

Incompressible Fluids

Volume Preserving 
Maps

dx

dt
= B(x, t) ∇ · B = 0

dx

dt
= v(x, t) ∇ · v = 0Poincaré Map for 

Periodic Time 
dependence: V.P.



a = b = c = 0.1

x′ = x + a sin(2πz) + c cos(2πy)
y′ = y + b sin(2πx′) + a cos(2πz)
z′ = z + c sin(2πy′) + b cos(2πx′)

ABC Map



a = b = c = 0.1



a = b = c = 0.1

InvariantTori !
Transport & Chaos !
Rotation numbers "L, "# (Hmm...)
Limits of Periodic Orbits ??



A Residue Criterion? 
KAM theory applies  (Cheng & Sun)

However, can’t fix the frequencies!

Is there a last torus? Self-Similarity?

What rotation vector plays the role of the 
golden mean? 

Perhaps the spiral mean $3= $+1?

Are there cantori?

Anti-integrable theory by Li & Malkin 



Stability
Characteristic Polynomial has two 
parameters
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Stable Tori would be here:
Saddle-Center-Hopf Line
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Triple-one Eigenvalue



Quadratic VP Map
Normal form for (1,1,1) bifurcation

Generalizes Hénon’s 2D Map

Hydrogen-Atom Model for 3D 
dynamics

f(x, y, z) =




1 1 0
0 1 1
0 0 1








x
y

z + p(x, y)





p(x, y) = −ε + µy + ax2 + bxy + cy2



Saddle-Center-Hopf
Two fixed points: typically one type-A (2,1) and 
one type-B (1,2).

2D stable and unstable manifolds intersect 
forming a “sphere”

Inside of sphere 
foliated (% << 1) by 
invariant tori

Spheromak is
generic!

(e.g. Greene’s Magnetic Nulls)

Dullin & Meiss 2008



Vortex Rings

Elliptical Vortex Ring
T.T. Lim (Singapore)

http://serve.me.nus.edu.sg/limtt/#Video_Gallery

http://serve.me.nus.edu.sg/limtt/#Video_Gallery
http://serve.me.nus.edu.sg/limtt/#Video_Gallery


Circle Bifurcations
Elliptic invariant circle has longitudinal & 
transverse frequencies

Bifurcations may occur when
!
L

!
T

m1ωL + m2ωT = k , m1, m2, k ∈ Z



Circle Bifurcations
Circles created in Saddle-Center-Hopf 
Bifurcation at % = 0

! = 0.317

! = 0.25

! = 0.252
! = 0.235

! = 0.148

! = 0.05

! = 0.302

"
L

"
T

& = -2.4

(7,1,2)
(3,4,1)
 (3,3,1)

 (10,3,3)
(46-2,13)

(7,0,2)



& = -2.4

(7,1,2) % = 0.052 (3,5,1) % = 0.1 (4,-3,1) % = 0.21 

Resonances



Three types m.! = k 
(m1,m2) coprime

torus knots

(m1,m2) reducible

torus links

"L rational: (m,k)=(m1,0,k) 

“Pearls on a String”

(-4,4,1)

(2,5,1)



(0.056, -1.0) (0.057, -1.0)

(0.109, -2.7) (0.114, -2.7)

(0.096, -2.2)(0.092, -2.2)

(1,2,0) Resonance: 
Torus Knot

(4,2,1) Resonance: 
Torus Link

(3,-2,1) Resonance: 
Torus Knot



3: Pearls on a String
Rational "L (m2 = 0), the circle mode locks 
into a pair of periodic orbits

Generically one is type-A and one is type-B

(2,0,1) (4,0,1)



&=-3.64, %=0.08

(m,k) = (5,0,2)



(5,0,1) Pearls

& = -1.383



Much still to do...
Self-Similarity?

How to tori break-
up?

Last Torus?
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Differential equations are the basis for models of any physical systems that exhibit
smooth change. This book combines much of the material found in a traditional
course on ordinary differential equations with an introduction to the more modern
theory of dynamical systems. Applications of this theory to physics, biology,
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modeling, fluid dynamics, electronics, and mechanics.

Differential Dynamical Systems begins with coverage of linear systems, including
matrix algebra; the focus then shifts to foundational material on nonlinear differential
equations, making heavy use of the contraction-mapping theorem. Subsequent
chapters deal specifically with dynamical systems concepts—flow, stability, invariant
manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. 

Throughout the book, the author includes exercises to help students develop an
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offers simple codes written in Maple®, Mathematica®, and MATLAB® software to
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James D. Meiss is a Professor in the Department of Applied
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